
Artificial Intelligence

Augustin Cosse.

Fall 2020

September 14, 2020



Knowledge Based agents (Recap I)

• Agent = something that perceives and acts in a given
environment.

• An Ideal Agent is an agent that always chooses the action
that is expected to maximize its performance measure

• An agent is autonomous when its actions only depends on its
own experience (i.e the experience that it has accumulated
through time) and not on any knowledge that was built in by
the programmer.



Knowledge Based agents (Recap II)

• Different types of agents are usually classified based on how
they take their decisions as well as on the information they
use in the decision process. The design of an agent depend on
4 main aspects:

• Percepts

• Actions

• Goals

• Environment

• Reflex agents respond immediately to percepts. Goal-based
agents act in order to maximize their goals, and utility based
agents try to maximize their level of happiness.



Environment

• There are several ways to program an environment. We have
already taken one approach through object oriented
programming in python.

• In general, when designing our environment, we will often
want to



Implementing the environment (I)

input : state (initial state of the env.)
Update() or Step() (to update the environment)
agents (a set of agents)
termination (stop criterion for iterations)

while termination is not true do
for each agent in agents do

percept[agent] ← agent.getPercept(state)

end
for each agent in agents do

action[agent] ←
agent.program(agent.Percept(state))

end
state ← UpdateFun(action, agents,state)

end
Algorithm 1: Implementation of an Environment



input : state (initial state of the env.)
Update() or Step()
agents (a set of agents)
termination (stop criterion for iterations)

loc. var.: scores (vector of size size[agents])
while termination is not true do

for each agent in agents do
percept[agent] ← agent.getPercept(state)

end
for each agent in agents do

action[agent] ←
agent.program(agent.Percept(state))

end
state ← UpdateFun(action, agents,state)

scores ← PerformanceFun(scores, agents,state)

end
return : scores



• Ideally we should define our agent to work for a given family
of different environments. Using object oriented programming
is thus a good idea in this case.

• We could for example design a chess program to compete
against a set of different human or machine opponents.

• When evaluating the performance of the agent, we will then
select particular instances of environments at random,
measure the performance of our agent on those different
environments and then compute the average of the
perfromances over each of the agents

• Finally note that when designing the agent class and the
environment class we will want to be careful about the
disctinction between the agent’s state variable and the
environment state’s variable.



Solving Problems by searching

• Now that we have discussed the main families of agents, we
will consider how an agent can act by establishing golas and
then consider particular sequences of actions that might
achieve those goals.

• A goal together with a set of means to achieve this goals is
called a problem.

• The process of exploring what the means can do is called a
search



Solving Problems by searching

• Simple reflex agents are unable to plan ahead

• Such agents are limited in what they can achieve becaue their
actions are detemrined only by the current percept

• Furthermore, they have no knowledge of what their actions do
or what they are trying to achieve.



Solving Problems by searching

• Given a precise definition of a problem is relatively
straighforward to construct a search process for finding
solutions.

• We make the distinction between Blind or Uninformed Search
Methods and Informed Search methods:

• In Uninformed Search, the order in which the nodes are
expanded depends only on information gathered by the search
but is unaffected by the character of the unexplored portion of
the graph, not even the goal criterion

• Informed Search Methods on the contrary use partial
information about the problem domain and about the nature
of the goal to help guide the search toward the more promising
solutions



Solving Problems by searching

• Good additional references for this week :

• Pearl, Heuristics, Intelligent Search Strategies for Computer
Probem Solving, Chap.

• Russel and Norvig, Artificial Intelligence, A modern Approach,
Chap. 1-3.



Search Space and Problem representations

• Most problems can be posed either as Optimization tasks
(e.g. Road map, travelling salesman,..) or Satisfaction tasks
(e.g 8 queens, counterfeit problem)

• In Optimization problems, the objective is not just to exhibit a
formal object satisfying an established set of criteria but also
to ascertain that this object possesses qualities unmatched by
the other objects in the cadidate space

• In Satisfaction Problems, on the other hand, the only objective
is to discover an qualified object with as little search effort as
possible.



Solving Problems by searching

• Nodes that have been generated but haven’t yet been
explored as sometimes called open. On the contrary, the
nodes that have already been expanded are called closed.



A couple of examples: Travelling salesman

• The travelling salesman problem. Here the goal is to find the
cheapest tour (i.e cheapest path that visits every node once
and only once and return to the initial node) in a graph with
N node and each edge assigned a nonnegative cost.

• The TSP belongs to a class of problems called NP-hard for
which all known algorithms require exponential time in the
worst case. However the use of bounding functions can help
find the optimal tour in much less time.



A couple of examples: Travelling salesman

• Consider the two paths ABC and AED shown on the figure
below. The cost of the overall solution is the cost of the
partial tour + the cost of completing the tour.

• However since finding the optimal completion is almost as
hard as finding the entire optimal tour, if we want the search
to be efficient, we need to turn to some heuristic estimate of
the completion cost



A couple of examples: Travelling salesman
• Given the heuristic estimates, the choice of which partial tour

to extend first depends on which one of them, after we
combine the cost of the explored part with the estimate of its
completion offers the lower alternative.

• If at each stage, we select as extension the partial tour with
the lowest estimated complete tour cost and if the heuristic
function is optimistic (i.e it consistently underestimate the
actual cost to complete a tour) then the first partial tour that
is selected for extension and found to already be a complete
tour is also a cheapest tour.



A couple of examples: Travelling salesman

• Two heuristics that have received the greatest attention are

• The cheapest second degree graph going through all remaining
nodes (including D and A below)

• The minimum spanning tree (MST) through all remaining
nodes (including D and A below)



A couple of examples: Travelling salesman

• Cheapest second degree graph requires solving an optimal
assignment problem (on the order of N3 steps). The minimum
spanning tree requires on the order of N2 steps.

• Other (simpler) heuristics include taking as an estimate of the
cost to complete the partial tour, the cost of the edge (or the
two edges path) from the end of the tour to the initial node.
Such functions however grossly underestimate the completion
cost.



A couple of examples: Roadmap problem

• Given a map such as shown below, we want to find the
shortest path between city A and city B assuming that each
road on the map is specified by a label next to it.



A couple of examples: Roadmap problem
• When given an actual map, we would rule out the roads that

lead away from the general direction of the destination.

• An human observer looking at the map exploits vision
machinery to estimate the Euclidean distances on the map and
since the distance from D to B is shorted than the distance
from C to B, city D appears as a more promising candidate.



A couple of examples: Roadmap problem
• In the absence of a map (e.g. when given a table of pairwise

distances between connected cities) we could attempt to
simulate this extra information

• For example, as we can easily estimate air distances between
cities from their coordinates, we can consider a heuristic
function h(i) which computes the air distance from city i to
the goal city B.



A couple of examples: 8 queens problem

• The goal of the 8 queens problem is to place eight queens on
a chess board such that no queens can attack another. This is
equivalent to placing the queens so that no row, column or
diagonal contains more than one queen



A couple of examples: 8 queens problem

• As for the other problems, we can forgo the hope of obtaining
the solution in one step and proceed step by step, in an
incremental manner.



A couple of examples: 8 queens problem
• One approach could be to start from an arbitrary arragement

of the 8 queens that we would then transform iteratively,
going from one board configuration to another, until the
queens are adequately dispersed. The transformation should
be systematic so that we do not apply the same
transformation twice.



A couple of examples: 8 queens problem
• An alternative would be to start with an empty board, then

attempt to place the queens one at a time. This way we
already rule out violations of the problem constraints. Since
there can be only one queen in each row, we can assign the
first queen to the first row, the second queen to the second
row and so on



A couple of examples: 8 queens problem

• Assume that we have positioned three queens as below and
wonder whether we should position the fourth on in A, B or
C. A heuristic in this case would have to determine, at least
tentatively, which of the three positions appears to have the
highest chance of leading to a satisfactory solution.



A couple of examples: 8 queens problem
• We could define a first heuristic by preferring candidate

solutions that leaves the highest number of unattacked cells
on the board (i.e. to be able to place the remaining queens,
we want to leave as many options as possible for future
additions). If we let f (·) denote the number of unattacked
cells, we get f (A) = 8, f (B) = 9 and f (C ) = 10.



A couple of examples: 8 queens problem
• A more sophisticated heuristic would focus on the rows with

the smallest number of unattacked cells are those rows are
more likely to provide unattacked cells in the future. We
should then choose as our next position, the position that
maximizes such rows. Using this as our heuristic, we get
f ′(A) = f ′(B) = 1 and f ′(C ) = 2



A couple of examples: 8 queens problem
• A more sophisticated heuristic would focus on the rows with

the smallest number of unattacked cells are those rows are
more likely to provide unattacked cells in the future. We
should then choose as our next position, the position that
maximizes such rows. Using this as our heuristic, we get
f ′(A) = f ′(B) = 1 and f ′(C ) = 2



A couple of examples: Counterfeit coin problem

• We are given 12 coins, one of which is know to be heavier or
lighter than the rest. Using a two-pan scale, we must find the
counterfeit coin and determine whether it is light or heavy in
no more than three tests

• To solve the counterfeit coin problem, we must find a
weighing strategy, i.e. a prescription of what to weigh first ,
what to weight second for each possible outcome of the first
weight, and finally an indication of which coin is counterfeit.

• This coin can be solved by an exhaustive enumeration of all
decisions and all possible test outcomes. The use of heuristics
is to focus attention on the most promising weighing
strategies and to attempt to find a solution without exploring
all possible strategies



A first algorithm: Hill climbing

• In terms of graphs, hill climbing strategy amounts to
repeatedly expanding a node, inspecting its newly generated
successors, and choosing and expanding the best among those
successors while retaining no further references to the father
or siblings.

• When we come to a local maximum (a node more valuable
than any of its successors), no further improvements is
possible by local perturbations and the process must
terminate without reaching a solution.

• In such procedure, the only way to free ourselves from a
deadlock is to start afresh from what we hope is a completely
new node, thus risking to violate an important principle in
systematic search: do not turn any stone more than once.



A first algorithm: Hill climbing

• The strategy is called irrevocable, because the process does
not permits us to shift attention back to the previously
suspended alternatives.

• Hill climbing is a useful strategy when we possess a highly
informative guiding function that keeps up away from local
maxima, ridges and plateaux, and that can lead us quickly
toward the global peak.



Uninformed Search Methods: DFS

• We now would like to bring our strategy in line with the
requirements of systematization

• If for some reason a given search avenue is chosen for
exploration, the other candidate alternatives should not be
discarded but should be keptin reserve in case the avenue
chosen fails to produce an adequate solution.

• In Depth First Search (DFS), priority is given to nodes at
deeper levels of the the search graph. That is each node
chosen for exploration gets all its successors generated before
another node is explored

• Such a policy can be dangerous when implemented on large
graphs, especially those of infinite depth.



Uninformed Search Methods: DFS

• To make sure that the search does not run indefinitely, Depth
First Search Algorithms are usually equipped with a depth
bound - a stopping rule that, when triggered, returns the
algorithm’s attention to the deepest alternative not exceeding
this bound

• The program backtracks under one of two conditions:

• The depth bound is exceeded

• A node is recognized as a dead end



Uninformed Search Methods: DFS

1. Put the start node on OPEN

2. If OPEN is empty, exit with failure, otherwise continue

3. Remove the topmost node from OPEN and put it on
CLOSED. Call this node n

4. If the depth of n is equal to the depth bound, clean up
CLOSED and go to step 2. Otherwise continue

5. Expand n, generating all its successors. Put these successors
(in no particular order) on top of OPEN and provide for each
a pointer back to n

6. If any of these successors is a goal node, exit with the solution
obtained by tracing back through its pointers. Oterhwsie
continue.

7. If any of the successors is a dead end, remove it from OPEN
and clean up CLOSED.

8. Go to step 2



Uninformed Search Methods: Backtracking

1. Backtracking is a version of DFS that applies the last in first
out policy for node generation instead of node expansion.

2. When a node is selected first for exploration, only one of its
successors is generated and the newly generated node, unless
it is found to be a terminal or a dead end, is again submitted
for exploration.

3. If the generated node meets some stopping criterion, the
program backtracks to the closest unexpanded ancestor, that
is, an ancestor still having ungenerated successors.



Uninformed Search Methods: backtracking

1. Put the start node on OPEN

2. If OPEN is empty, exit with failure, otherwise continue

3. Examine the topmost node from OPEN and call it n

4. If the depth of n is equal to the depth bound or if all the
braches emanating from n have already been traversed,
remove n from OPEN and go to step 2. Otherwise continue

5. Generate a new successor of n (along a branch not previously
traversed), call it n′. Put n′ on top of OPEN and provide a
pointer back to n

6. Mark n to indicate that the branch (n, n′) has been traversed

7. If n′ is a goal node, exit with the solution obtained by tracing
back through its pointers; otherwise continue

8. If n′ is a dead end, remove it from OPEN

9. Go to step 2



Uninformed Search Methods: Backtracking

• The main advantage of backtracking over depth first search
lies in achieving an even greater storage in memory

• Instead of retaining all the successors of an expanded node,
we only store a single successor at any given time.



Uninformed Search Methods: Breadth First Strategies

• As opposed to depth first search, assign a higher priority to
nodes athe shallowest levels of the searched graph

• Instead of Last In First Out (LIFO) policy, Breadth First
Search is implemented by a First-In-First-Out (FIFO) policy,
giving first priority to the nodes residing on OPEN for the
longest time



Uninformed Search Methods: BFS

1. Put the start node on OPEN

2. If OPEN is empty, exit with failure, otherwise continue

3. Remove the topmost node from OPEN and put it on
CLOSED. Call this node n

4. If the depth of n is equal to the depth bound, clean up
CLOSED and go to step 2. Otherwise continue

5. Expand n, generating all its successors. Put these successors
(in no particular order) at the bottom of OPEN and provide
for each a pointer back to n

6. If any of these successors is a goal node, exit with the solution
obtained by tracing back through its pointers. Oterhwsie
continue.

7. If any of the successors is a dead end, remove it from OPEN
and clean up CLOSED.

8. Go to step 2



Additional alternatives and improvements

• Other uninformed alternatives include Depth limited Search
(impose a cutoff on the maximum depth of a path), Iterative
Deepening Search (successively investigate all depth limits,
starting with depth 0, then 1,...), Bidirectional search
(simultaneously search both forward from the initial state and
backward from the goal, stop when the two searches meet in
the middle)



Uninformed Search Methods: Breadth First Strategies



Informed Search Methods: Best First

• The promise of a node can be encoded in various ways. One
way is the difficulty of solving the problem underlying that
node, another way is to estimate the quality of the set of
candidate solutions encoded by the node. Finally we could
consider the amount of information we anticipate to gain by
expanding the node.

• In all these approaches, the promise of a node is estimated
numerically by means of a heuristic evaluation function f (n)



Informed Search Methods: Best First (I)

1. Put the start node s on a list called OPEN of unexpanded
nodes

2. If OPEN is empty, exit with failure; no solution exists

3. Remove from OPEN a node n at which f is minimum (break
ties arbitrarily) and place it on a list called CLOSED to be
used for expanded nodes

4. Expand node n, generating all its successors with pointers
back to n

5. If any of n’s successors is a goal node, exit successfully with
the solution obtained by tracing the path along the pointers
from the goal back to s



Informed Search Methods: Best First (II)

6. For every successor n′ of n:

6.1 Calculate f (n′)
6.2 If n′ was neither on OPEN nor on CLOSED,a dd it to OPEN.

Attach a pointer from n′ back to n. Assign the newly
computed f (n′) to node n′

6.3 If n′ already resided on OPEN or CLOSED, compare the newly
computed f (n′) with the value previously assigned to n′. If the
old value is lower, discard the newly generated node. If the
new value is lower, substitute it for the old (n′ now points back
to n instead of to its previous predecessor). If the matching
node n′ resided on CLOSED, move it back to OPEN

7. Go Back to Step 2



Informed Search Methods: A∗

• We now use g(n) to encode the cost of the current path from
s (source) to n with g(s) = 0

• We let h(n) to denote an estimate fo the h∗(n), such that
h(γ) = 0

• We also use f ∗ to denote the sum f ∗(n) = g∗(n) = h∗(n)
(optimal cost over all solution paths constrained to go
through n)



Informed Search Methods: A∗

6. Put the node s on OPEN

7. If OPEN is empty, exit with failure

8. Remove from OPEN and place on CLOSED a node n for
which f is minimum

9. If n is a goal node, exit successfully with the solution obtained
by tracing back the pointers from n to s

10. Otherwise expand n, generating all its successors, and attach
to them pointers back to n. For every successor n′ of n

10.1 If n′ is not already on OPEN or CLOSED, estimate h(n′)
(estimate of the cost of the beth path from n′ to some goal
node) and calculate f (n′) = g(n′) + h(n′) where
g(n′) = g(n) + c(n, n′) and g(s) = 0

10.2 if n′ is already on OPEN or CLOSED, direct its pointers along
the path yielding the lowest g(n′)

10.3 If n′ required pointer adjustment and was found on CLOSED,
reopen it

11. Go to step 2.



Properties of heuristic methods

Definition (Completeness)

An algorithm is said to be complete if it terminates with a solution
when one exists

Definition (Admissibility)

An algorithm is admissible if it is guaranteed to return an optimal
solution whenever such a solution exists

Definition (Domination)

An algorithm A1 is said to dominate another algorithm A2 if every
node expanded by A1 is also expanded by A2. Similarly, A1 strictly
dominates A2 if A1 dominates A2 and A2 does not dominate A1.
The expression “more effcient than” is sometimes used instead of
“dominates”.

Definition (Optimality)

An algorithm is said to be optimal over a class of algorithms if it
dominates all members of this class.



Properties of heuristic methods

Theorem
A∗ is complete on finite graphs

Proof.
The only possiblity for the search to complete is when we reach a
goal node or when open is empty, in which case it is unsuccessful.
However, since we assumed a single start node, as long as there
exists an optimal path Ps→γ , there will always be a node in open

(recall that each time we expand a node, we add all the children of
this node in open)


