
Artificial Intelligence 47 (1991) 31-56 31
Elsevier

Logic and artificial intelligence

Nils J. N i l s son
Computer Science Department, Stanford University, Stanford, CA 94305, USA

Received February 1989

Abstract

Nilsson, N.J., Logic and artificial intelligence, Artificial Intelligence 47 (1990) 31-56.

The theoretical foundations of the logical approach to artificial intelligence are presented.
Logical languages are widely used for expressing the declarative knowledge needed in
artificial intelligence systems. Symbolic logic also provides a clear semantics for knowledge
representation languages and a methodology for analyzing and comparing deductive infer-
ence techniques. Several observations gained from experience with the approach are
discussed. Finally, we confront some challenging problems for artificial intelligence and
describe what is being done in an attempt to solve them.

1. Introduction

Until a technological endeavor achieves a substantial number of its goals,
several competing approaches are likely to be pursued. So it is with artificial
intelligence (AI). AI researchers have programmed a number of demonstration
systems that exhibit a fair degree of intelligence in limited domains (and some
systems that even have commercial value). However, we are still far from
achieving the versatile cognitive skills of humans. And so research continues
along a number of paths---each with its ardent proponents. Although successful
AI systems of the future will probably draw upon a combination of techniques,
it is useful to study the different approaches in their pure forms in order to
highlight strengths and weaknesses. Here, I present my view of what consti-
tutes the "logical approach" to AI.

Some of the criticisms of the use of logic in AI stem from confusion about
what it is that "logicists" claim for their approach. As we shall see, logicism
provides a point of view and principles for constructing languages and proce-
dures used by intelligent machines. It certainly does not promise a ready-made
apparatus whose handle needs only to be turned to emit intelligence. Indeed,
some researchers who might not count themselves among those following a
logical approach can arguably be identified with the logicist position. (See, for
example, Smith's review of a paper by Lenat and Feigenbaum [28, 54].) Other,

0004-3702/91/$03.50 © 1991 - - Elsevier Science Publishers B.V.

32 N.J. Nilsson

more naive, criticisms claim that since so much of human thought is "illogical"
(creative, intuitive, etc.), machines based on logic will never achieve human-
level cognitive abilities. But puns on the word "logic" are irrelevant for
evaluating the use of logic in building intelligent machines; making "illogical"
machines is no trouble at all!

In describing logic and AI, we first relate the logical approach to three theses
about the role of knowledge in intelligent systems. Then we examine the
theoretical foundations underlying the logical approach. Next, we consider
some important observations gained from experience with the approach.
Lastly, we confront some challenging problems for AI and describe what is
being done in an attempt to solve them. For a textbook-length treatment of
logic and AI see [12].

2. Artificial intelligence and declarative knowledge

The logical approach to AI is based on three theses:

Thesis 1. Intelligent machines will have knowledge of their environments.

Perhaps this statement is noncontroversial. It is probably definitional. Sever-
al authors have discussed what it might mean to ascribe knowledge to
machines--even to simple machines such as thermostats [33, 48].

Thesis 2. The most versatile intelligent machines will represent much of their
knowledge about their environments declaratively.

AI researchers attempt to distinguish between declarative and procedural
knowledge and argue about the merits of each. (See, for example, [16, 60].)
Roughly speaking, declarative knowledge is encoded explicitly in the machine
in the form of sentences in some language, and procedural knowledge is
manifested in programs in the machine. A more precise distinction would have
to take into account some notion of level of knowledge. For example, a LISP
program which is regarded as a program (at one level) is regarded (at a lower
level) as a declarative structure that is interpreted by another program. Settling
on precise definitions of procedural and declarative knowledge is beyond our
scope here. Our thesis simply states that versatile intelligent machines will have
(among other things) a place where information about the environment is
stored explicitly in the form of sentences. Even though any knowledge that is
ascribed to a machine (however represented in the machine) might be given a
declarative interpretation by an outside observer, we will not say that the

Logic and artificial intelligence 33

machine possesses declarative knowledge unless such knowledge is actually
represented by explicit sentences in the memory of the machine.

When knowledge is represented as declarative sentences, the sentences are
manipulated by reasoning processes when the machine is attempting to use that
knowledge. Thus, the component that decides how to use declarative knowl-
edge is separate from the knowledge itself. With procedural approaches to
knowledge representation, knowledge use is inextricably intertwined with
knowledge representation.

The first serious proposal for an intelligent system with declarative knowl-
edge was by John McCarthy [32]. McCarthy noted the versatility of declara-
tively represented knowledge: it could be used by the machine even for
purposes unforeseen by the machine's designer, it could more easily be
modified than could knowledge embodied in programs, and it facilitated
communication between the machine and other machines and humans. As he
wrote later, "Sentences can be true in much wider contexts than specific
programs can be useful" [36].

Smolensky [55] listed some similar advantages: "a. Public access: [Declara-
tive] knowledge is accessible to many people; b. Reliability: Different people
(or the same person at different times) can reliably check whether conclusions
have been validly reached; c. Formality, bootstrapping, universality: The
inferential operations require very little experience with the domain to which
the symbols refer."

To exploit these advantages, the declaratively represented knowledge must,
to a large extent, be context free. That is, the meaning of the sentences
expressing the knowledge should depend on the sentences themselves and not
on the external context in which the machine finds itself. The context-free
requirement would rule out terms such as "here" and "now" whose meaning
depends on context. Such terms are called indexicals.

Many database systems and expert systems can be said to use declarative
knowledge, and the "frames" and "semantic networks" used by several AI
programs can be regarded as sets of declarative sentences. On the other hand,
there are several examples of systems that do not represent knowledge about
the world as declarative sentences. Some of these are described in the other
papers in this volume.

Thesis 3. For the most versatile machines, the language in which declarative
knowledge is represented must be at least as expressive as first-order predicate
calculus.

One might hope that a natural language such as English might serve as the
language in which to represent knowledge for intelligent systems. If this were
possible, then all of the knowledge already compiled in books would be
immediately available for use by computers. Although humans somehow

34 N.J . Ni~son

understand English well enough, it is too ambiguous a representational

medium for present-day computers - - the meanings of English sentences depend
too much on the contexts in which they are uttered and understood.

AI researchers have experimented with a wide variety of languages in which
to represent sentences. Some of these languages have limited expressive
power. They might not have a means for saying that one or another of two
facts is true without saying which fact is true. Some cannot say that a fact is not
true without saying what is true instead. They might not be able to say that al l

the members of a class have a certain property without explicitly listing each of
them. Finally, some are not able to state that at least one member of a class
has a certain property without stating which member does. First-order predi-
cate calculus, through its ability to formulate disjunctions, negations, and
universally and existentially quantified sentences, does not suffer from these
limitations and thus meets our minimal representational requirements.

3 . F o u n d a t i o n s o f t h e l o g i c a l a p p r o a c h

In addition to the three theses just stated, the logical approach to AI also
embraces a point of view about what knowledge is, what the world is, how a
machine interacts with the world, and the role and extent of special procedures
in the design of intelligent machines.

Those designers who would claim that their machines possess declarative
knowledge about the world are obliged to say something about what that claim
means. The fact that a machine's knowledge base has an expression in it like
(Vx)Box(x) ~ Green(x), for example, doesn' t by itself justify the claim that the
machine b e l i e v e s all boxes are green. (The mnemonic relation constants that
we use in our design aren' t mnemonic for the machine! We could just as well
have written (Vx)GO11 (x) ~ GO23(x).)

There are different views of what it means for a machine possessing a
database of sentences to believe the facts intended by those sentences. The
view that I favor involves making some (perhaps unusual) metaphysical

in ' World
. W

A

see :]iV -----* S

m e m : S x .M ---~.A,~

ac~ : S x A4 ----* A,

e f f e c t : ,4 x W ~ W

Fig. 1. Machine and world.

Logic and artificial intelligence 35

assumptions about what we take the "real world" to be and about how our
machines interact with that world. I will give a simplified account of this view
here. It is based, in part, on a discussion of intelligent agent architecture in [12,

Chapter 13].
Figure 1 shows a machine interacting with the world. Both machine and

world are regarded as finite-state machines. We denote the machine state by
M; it is one of a set ~t of states. We denote the world state by W; it is one of a
set o/¢ of states. The input to the machine is denoted by S---one of a set fie of
inputs; the output of the machine is denoted by A---one of a set ~ of outputs.
States, inputs, and outputs are related as follows: the function see maps °W into
fie; the function m e m maps fie x At into At; the function act maps fie x At into

M; lastly, the function effect maps M x 74/" into 74/. The function see models the
fact that the machine is not sensitive to every aspect of the world; it partitions
the world into classes whose members, as far as the machine is concerned, are
equivalent. The function mere models the machine's memory behavior; the
machine's state at any instant is a function of the machine's input and its
previous state. The function act describes how the machine acts on the world;
its action is a function of its state and its input. We model the effects of these
actions on the world (as well as the world's own internal dynamics) by effect.

This model of a machine and its world is sufficiently general to capture a
number of approaches to intelligent machine design. To particularize it to the
logical approach, we stipulate that the state of the machine is given by a set of
sentences, which for concreteness we hereinafter take to be sentences in the
first-order predicate calculus. The function mere transforms such a set of
sentences (together with the input to the machine) into another set of
sentences (and thus changes the machine's state). The function act is a function
of such a set of sentences (and the machine's input) and produces as output a
machine action.

Describing how the designer specifies act, m e m , and an initial set of
sentences requires some discussion about the relationship between these
sentences and what the designer imagines the world of the machine to be like.
We suppose that the designer thinks of the world literally as a finite-state
machine which he describes as a mathematical structure consisting of objects,

funct ions , and relations. Some of the objects in this mathematical structure
might be states, others might be other entities that the designer thinks exist in
the wor ld- -some of which are dependent on state. This structure must also
account for the finite-state machine function effect, which produces a new
world state depending on the action of the intelligent machine and the old
world state, and the function see, which maps world states into the input to the
intelligent machine. AI researchers have explored a variety of ways to conceive
of the world in terms of objects, functions, and relations; while we will not
describe any particular conceptualization here, they can all be accommodated
by the account we are giving. (It may seem strange to think of the real world as

36 N.J. Ni&son

a mathematical structure, but since our picture provides for the world to be
affected by and affect itself and the intelligent machine, one shouldn't worry
that our view of the world is impractically ethereal.)

Now, the designer of a machine that is to interact with the world never
knows what the world objects, functions, and relations actually are. He must
guess. Guessing involves invention on the designer's part. (Our machine
designer is in the same predicament as is the scientist; scientists invent
descriptions of the world and gradually refine them until they are more useful.)
We use the term conceptualization to describe the designer's guess about the
world objects, functions, and relations. The designer may not even be able to
specify a single conceptualization; for example he may choose not to commit
himself regarding whether an object he invents, say a block, has the color
property green or blue. Thus, in general, the designer attempts to specify a set
of conceptualizations such that, whatever the world actually is, he guesses it is
a member of the set.

The designer realizes, of course, that his conceptualization might not accu-
rately capture the wor ld- -even as he himself believes it to be. For example, his
conceptualization may not discriminate between objects that he himself recog-
nizes to be different but which can be considered to be the same considering
his purposes for the machine. The designer need only invent a conceptualiza-
tion that is good enough, and when and if it becomes apparent that it is
deficient (and that this deficiency is the cause of inadequate machine per-
formance), he can modify his conceptualization.

We stress that the objects guessed to exist in the world by the designer are
invented. He is perfectly free to invent anything that makes the machine
perform appropriately, and he doesn't ask whether or not some object really
does or does not exist (whatever that might mean) apart from these invented
structures. For many ordinary, concrete objects such as chairs, houses, people,
and so on, we can be reasonably confident that our inventions mirror reality.
But some of the things that we might want to include as world objects, such as
precambrian unconformities, English sentences, the Peloponnesian War, ~r, and
truth, have a somewhat more arbitrary ontological status. In fact, much of the
designer's guess about the world may be quite arbitrary in the sense that other
guesses would have suited his purposes equally well. (Even those researchers
following other declarative, but putatively non-logical, approaches must invent
the equivalent of objects, relations, and functions when they attempt to give
their machines declarative knowledge.)

A logicist expresses his conceptualization of the world (for the machine) by a
set of sentences. The sentences are made part of the machine's memory
(comprising its state) and embody the machine's declarative knowledge. We
assume that the sentences are in the first-order predicate calculus; this language
and the sentences in it are constructed as follows: For every world object in the
conceptualization we create an object constant; for every world relation, we

Logic and artificial intelligence 37

create a relation constant; and for every world function, we create a function
constant. Using these constructs, and the syntax of predicate calculus, we (the
designer) then compose a set of sentences to express the declarative knowledge
that we want the machine to have about the world.

When a designer cannot (or does not choose to) specify which of two
relations holds, he uses a disjunction, such as: Box(Obl)A[Blue(Obl)v
Green(Obl)]. Or he may use an existentially quantified statement; (3x)Box(x)A
Green(x). Or, he might know that all boxes are green: (Vx)Box(x)D Green(x).

In what sense can we say that a collection of predicate calculus sentences
represents knowledge about the world? Our answer to this question involves
the notions of interpretations and models of sentences in the predicate calculus.
Briefly, an interpretation consists of:

(1) an assignment of a relation to each relation constant;
(2) an assignment of an object to each object constant;
(3) an assignment of a function to each function constant;
(4) a procedure for assigning the values T (true) or F (false) to each closed

formula. (This procedure involves evaluating ground atomic formulas
using the relat ion/object/function assignments and then using the stan-
dard logical truth tables for non-atomic ground sentences. The descrip-
tion of how quantified sentences are evaluated is slightly more complex
but respects the intuitive meanings of the quantifiers.)

Any interpretation for which all of the sentences in a set of sentences evaluates
to T is called a model of the set of sentences.

In terms of these definitions, the designer's task can be re-stated as follows:

Invent world objects, relations, and functions; a first-order predi-
cate calculus language; an interpretation of the expressions of this
language in terms of the objects, relations, and functions; and then
compose a set of sentences in the language such that the interpreta-
tion of those sentences is a model of the set of sentences.

We will call the world objects, relations, and functions invented by the
designer, the intended model of the sentences the designer uses to describe the
world. Although this interpretation itself may never actually be represented
explicitly as mathematical structure, it is important that it be firmly fixed in the
mind of the designer. With this interpretation in mind, the designer invents
linguistic terms to denote his invented objects, functions, and relations and
writes down predicate calculus sentences for which the intended interpretation
is a model.

The designer gives the machine declarative knowledge about the world by
storing these sentences in the machine's memory. We call the set of sentences
the knowledge base of the machine and denote the set by A. We assume that
the designer fixes the initial state of the machine by specifying some Ao; when

38 N.J. Nilsson

the machine is attached to the world, as in Fig. 1, m e m produces a sequence of
states A 0, d I A,

Even when the designer has a single intended interpretation in mind, zl, in
general, will be satisfied by a set of interpretat ions-- the intended one among

them. The designer must provide sufficient sentences in the knowledge base
such that its models are l imited--limited so that even though the set has more
than one model, it doesn't matter given the purposes for the machine. (To the
extent that it does matter, the designer must then provide more sentences.) In
designing knowledge bases, it frequently happens that the designer's idea of
the intended interpretation is changed and articulated by the very act of writing
down (and reasoning with) the sentences.

So, a machine possessing a set of sentences k n o w s about the world in the
sense that these sentences admit of a set of models, and this set is the
designer's best approximation to what the world actually is, given the purposes
for the machine. The actual world might not even be in the set (the designer's
guess might be wrong), so we really should be talking about the machine's
beliefs rather than the machine's k n o w l e d g e . But, following the tradition
established by the phrase "knowledge-based systems," we will continue to
speak of the machine's knowledge.

The machine's procedural knowledge is represented in the functions m e m

and act. The function m e m changes the sentences and thereby changes the
machine's state. Perhaps new sentences are added or existing ones are modified
or deleted in response to new sensory information. The function m e m may also
produce a change in the machine's state in the absence of sensory information;
changes to d may occur through processes of deduction or other types of
inference as will be described below.

The machine's declarative knowledge affects its actions through the function
act. We take act to be a function (over sets of sentences) that produces actions.
Note that act can thus only respond to sentences qua sentences , that is, as
strings of symbols. It is not a function of the models of these sentences!

Given this picture, we can identify a spectrum of design choices. At one end,
act and m e m are highly specialized to the tasks the machine is expected to
perform and to the environment in which it operates. We might say, in this
case, that the machine's knowledge is mainly procedura l l y represented. At the
other extreme, act and m e m are general purpose and largely independent of
the application. All application-specific knowledge is represented in A. The
machine's knowledge in this case can be said to be mainly declarat ively

represented. The logical approach usually involves a commitment to represent
most of the machine's knowledge declaratively. For a proposal at the extreme
declarative end, see [12, Chapter 13]. It is not yet known to what extent this
goal can be achieved while maintaining reasonable efficiency.

Because the actions emitted by act depend on the syntactic form of the
sentences in A, it is necessary for m e m to be able to rewrite these sentences in

Logic and artificial intelligence 39

the form appropriate to the task at hand. This aspect of mem we call reasoning.
Imagine, for example, a robot designed to paint boxes green. Its sentence-to-
action process, act, may include a production rule like " I f A includes the
sentence Box(n) for some value of 7/, paint the object denoted by ~ green." But
suppose za includes the sentences (Vx)Blue(x):3Box(x) and Blue(G17) but not
Box(G17) explicitly. We might expect that correct behavior for this robot would

be to paint the object denoted by 617 green, but there is no sentence-to-action
rule to accomplish that unless Box(G 17) occurs explicitly in A. Constructing the sen-
tence Box(G17) from the sentences (Vx)Blue(x) ~ Box (x) and Blue(G17) is an exam-

ple of one kind of sentence manipulation, or inference, that we want mem to do.
Often, as in the box-painting example, the new sentence constructed from

ones already in memory does not tell us anything new about the world. (All of
the models of (Vx)Blue(x)~ Box(x) and Blue(G17) are also models of Box(G17).
Thus, adding Box(G17) to A does not reduce the set of models.) What the new
sentence tells us was already implicitly said by the sentences from which it was

constructed.
If all of the models of /t are also models of a sentence th, we say that za

logically entails cb and write A ~ ~b. Among the computations that we might
want mem to perform are those which add sentences to ~1 that are logically
entailed by A. One apparent problem in devising such computations is the
prospect of having to check all the models of n to see if they are also models of
~b. But, fortunately, there exist strictly syntactic operations on A that are able

to compute logically entailed formulas.
We use the phrase rule o f inference to refer to any computation on a set of

sentences that produces new sentences. If tp can be derived from A by a
sequence of applications of rules of inference, we say that ~0 can be deduced
from A and write A F ~0. An example is the rule of inference called modus
ponens. From any sentences of the form p ~ o- and p, we can deduce the
sentence o- by modus ponens. The process of logical deduction involves using a
set of rules of inference to deduce additional sentences from a set of sentences.
Interestingly, it happens that there are rules of inference, modus ponens is an
example, that have the property that if A F ~b, then za ~ ~b. Such rules of

inference are called sound.
Sound rules of inference are extremely important because they allow us to

compute sentences that are logically entailed by a set of sentences using
computations on the sentences themselves (and not on their models).

We can also find sets of inference rules that have the property that if A ~ ~b
then the rules (successively applied) will eventually produce such a ~b. Such a
set of inference rules is called complete.

Although all logicists typically incorporate sound inference rules as part of
the calculations performed by mem, there is no necessary reason to limit mem
to performing sound inferences. Other computations are often desirable. We
will describe some of these later in the paper.

40 N.J. Nilsson

In summary, intelligent machines designed according to the logical approach
are state-machines whose states are sets of sentences. Machine state transitions
are governed by a function, mere, acting on the sentence sets and the inputs to
the machine. An important, but not the only, component of mem is sound
logical inference. Machine actions are governed by a function, act, of the
machine's state and inputs. The intended interpretation of the sentences in a
machine's state involves objects, functions, and relations that are the designer's
guesses about the world.

Through naming comes knowing; we grasp an object, mentally, by
giving it a name--hension, prehension, apprehension. And thus
through language create a whole world, corresponding to the other
world out there. Or we trust that it corresponds. Or perhaps, like a
German poet, we cease to care, becoming more concerned with the
naming than with the things named; the former becomes more real
than the latter. And so in the end the world is lost again. No, the
world remains--those unique, particular, incorrigibly individual
junipers and sandstone monoliths--and it is we who are lost.
Again. Round and round, through the endless labyrinth of
thought--the maze. (Edward Abbey [1, pp. 288-289].)

4. Comments on the logical approach

The basic idea underlying the logical approach to AI is simple, but attempts
to use it have resulted in several additional important insights.

4.1. The importance of conceptualization

The most important part of "the AI problem" involves inventing an appro-
priate conceptualization (intended model). It is not easy for a designer to
squeeze his intuitive and commonsense ideas about the world into a coherent
conceptualization involving objects, functions, and relations. Although this
exercise has been carried out for several limited problem domains (most
notably those to which expert systems have been successfully applied), there
are some particularly difficult subjects to conceptualize. Among these are
liquids and other "mass substances," processes, events, actions, beliefs, time,
goals, intentions, and plans. Some researchers feel that the frame problem, for
example, arises as it does as an artifact of an inappropriate (state-based)
conceptualization of change [17]. Others feel that change must involve the
notion of time (instead of the notion of state) [52]. Conceptualizing the
"cognitive state" of intelligent agents has been the subject of recent intense
study. (See, for example, [8] for a treatment of the intentions of agents and
[24, 40] for treatments of the knowledge and beliefs of agents.) Interestingly,

Logic and artificial intelligence 41

many of the most difficult conceptualization problems arise when attempting to
express knowledge about the everyday, "commonsense" world (see [20, 21]).
AI researchers join company with philosophers who have also been attempting
to formalize some of these ideas.

Choosing to use first-order predicate calculus as a representation language
does not relieve us of the chore of deciding what to say in that language.
Deciding what to say is harder than designing the language in which to say it!
The logical approach to AI carries with it no special insights into what
conceptualizations to use. (Logic is often criticized for providing form but not
content. Of course!)

It is important to stress that these conceptualization problems do not arise
simply as an undesirable side effect of the use of logic. They must be
confronted and resolved by any approach that attempts to represent knowledge
of the world by sentence-like, declarative structures. The fact that these
problems are exposed quite clearly in the coherent framework provided by the
logical approach should be counted as an advantage.

4.2. Sound and unsound inferences

Another important observation concerns the subject of sound inference.
Logicists are sometimes criticized for their alleged dependence on deduction.
Much human thought, the critics rightly claim, involves leaps of intuition,
inductive inference, and other guessing strategies that lie outside the realm of
sound inference. There are two things that can be said about such criticism.

First, logicists regard sound inference as an important, but not the only,
component of reasoning. We must be careful to note the circumstances under
which both sound and unsound inferences might appropriately be used. Recall
that the set of sentences A (with which a designer endows a machine) implicitly
defines a set of models. Either the designer actually has some subset of these
models in mind (as his guess about what the world is) or he is completely
unbiased about which of the models might represent the world. If he really is
unbiased, nothing other than sound inference would be desired by the de-
signer. Any deduced sentence ~b had better be logically entailed by A; if there
are some models of A, for example, that are not models of ~b, and if the
designer wanted the machine to conclude ~b, then he wouldn't have been
completely unbiased about which of the models of A represented the world.

If the designer has some subset of the models of A in mind, and if (for one
reason or another) he could not specify this subset by enlarging A, then there
are circumstances under which unsound inference might be appropriate. For
example, the designer may have some preference order over the models of ~1.
He may want to focus, for example, on the minimal models (according to the
preference order). These minimal models may be better guesses, in the
designer's mind, about the real world than would be the other models of A. In

42 N.J. Nilsson

that case, the inference ch would be appropriate if all the minimal models of A
were models of ~b. (We will see an example of the use of minimal models later.)

McCarthy [34] and Lifschitz [29] have studied a variety of such preference

orders over models and have investigated an (unsound) inference computation,
zalled circumscription, that is based on them. (We describe circumscription
later in this paper.) Several aspects of commonsense reasoning, including
inductive inference and default inference, appear to be mechanizable using
circumscription or something very much like it.

Although inductive inference is a complex and well studied subject, we can
use a simple version of it as an example of unsound inference. Consider the
premises

Emerald(Obl) A Color(Obl, Green),
Emerald(Ob2) A Color(Ob2, Green),

Emerald(Obn) A Color(Obn, Green).

For some adequately large value of n, we may want to inductively infer
(unsoundly but reasonably) (Vx)Emerald(x)3Color(x, Green) if there is no r/
mentioned in A such that A entails Emerald(r/) A -~Color(w, Green).

The second thing that can be said in defense of sound inference is that, in the
context of sufficient additional information, sound conclusions can be drawn
that might have seemed to have required unsound inference without the
additional information. For example, suppose A contains the following state-
ments:

(3y)(Vx)Emerald(x) 3 Color(x, y)

(intended meaning: there is a color such that all emeralds have that color),

(Vx, y, z)[Color(x, y) ^ Color(x, z)] 3 (y = z)

(intended meaning: a thing can have only one color).
From these statements, we can deduce that if a thing is an emerald, it has a

unique color. Now, if we subsequently learn

Color(Obl, Green) A Emerald(Obl),

we can deduce (soundly) (Vx)Emerald(x) :3 Color(x, Green). za already told us that
all emeralds have the same unique color, but did not specify what that color
was. Later information added to za allowed us to deduce a more specific
general rule.

Although the logical approach might sanction unsound inferences, logicists
would certainly want such inferences to have a well motivated model-theoretic

Logic and artificial intelligence 43

justification. For example, circumscription is motivated by minimal-model
entailment and thus might be called a "principled" inference even though not a
sound one.

4.3. Efficiency and semantic attachment to partial models

Earlier, we mentioned that it was fortunate that sound inference techniques
existed because it is impossible in most situations to check that all the models
of a were also models of some formula ~b. This "good fortune" is somewhat
illusory however, because finding deductions is in general intractable and for
many practical applications unworkably inefficient. Some people think that the
inefficiency of the logical approach disqualifies it from serious consideration as
a design strategy for intelligent machines.

There are several things to be said about logic and efficiency. First, it seems
incontestable that knowledge can be brought to bear on a problem more
efficiently when its use is tailored to the special features of that problem. When
knowledge is encoded in a fashion that permits many different uses, several
possible ways in which to use it may have to be tried in any given situation, and
the resulting search process takes time. A price does have to be paid for
generality, and the logical approach, it seems, pays a runtime cost to save
accumulated design costs.

But even so, much progress has been made in making inference processes
more efficient and practical for large problems. Stickel has developed one of
the most powerful first-order-logic theorem provers [56, 57]. Several resolution
refutation systems have been written that are able to solve large, nontrivial
reasoning problems, including some open problems in mathematics [59, 61].
Many large-scale AI systems depend heavily on predicate calculus representa-
tions and reasoning methods. Among the more substantial of these are TEAM,
a natural language interface to databases [14]; DART, a program for equipment
design and repair [11]; and KAMP, a program that generates English sentences

[31.
A very important technique for achieving efficiency in the context of the

logical approach involves augmenting theorem-proving methods with calcula-
tions on model-like structures. Often, calculations on models are much more
efficient than are inference processes, and we would be well advised to include
them as part of a machine's reasoning apparatus.

We mentioned that seldom does a designer make explicit his guess about the
world, the intended model. The set of models is implicitly defined by the set of
sentences in A. Sometimes, however, it is possible to be explicit about at least
part of the intended model. That is, we might be able to construct a part of the
model as list structure and programs in, say, LISP. For example, we can
represent objects as LISP atoms, functions as LISP functions, and relations as
LISP predicates. In such cases we can perform reasoning by computations with

44 N..I. Nilsson

these LISP constructs that we might otherwise have performed by logical
inference on the predicate calculus sentences. This point has previously been
made by a number of researchers t - -most notably by Weyhrauch [58]. Typical-
ly, the LISP constructs will constitute only a partial model; that is, there might
not be LISP referents for the expressions in all of the predicate calculus
sentences, and /or the LISP functions and predicates themselves may be defined

over just a subset of the intended domain. (In the following we will not always
be careful about saying partial models and interpretations even though those
are what we really mean.)

As an example, consider the predicate calculus sentences:

P(A), (Vx)P(x) D O(x).

Presumably, these sentences stem from a certain conceptualization of the
world. Suppose we can capture this conceptualization in LISP. Our intended
interpretation for P is (represented by) a certain LISP predicate P; our intended
interpretation for O is a certain LISP predicate Q; and our intended interpreta-
tion for A is a certain LISP atom A. If these intended interpretations are to be
parts of models for A then we know that (PA) and (or (not (PA)) (Q A)) will
both evaluate to T. Thus, we must make sure that (Q A) evaluates to T.

So, this gives us two ways to compute the truth value of Q(A) with respect to
the intended model. Given the initial sentences, we could deduce Q(A) using
sound inference rules. That is, if a reasoning program needed to know whether
or not Q(A) was true, it could find that it is true using logical inference. The fact
that Q(A) can be (soundly) deduced from the other sentences means that Q(A) is
logically entailed by them. And that means that all of the models of the initial
sentences are also models of Q(A). That means, a fortiori, that the intended
model of the initial sentence (whatever it is) is a model of Q(A).

The other way to compute the truth value of Q(A) is to associate Q(A) with
(Q .4) and evaluate (Q A) in LISP. We call this association semantic attachment.
Semantic attachment to appropriate computational structures, when such are
available, is sometimes more efficient than inference. It provides a means for
determining the truth of an expression directly in the intended model rather
than by establishing its truth in all models indirectly by sound inference.

It is my guess that practical AI systems will use a combination of logical
inference and semantic attachment with the latter perhaps predominating in
some applications and the former used as a "fall-back" method of great
generality. Several standard structures and programs already commonly used in
AI systems can be employed in semantic attachments. For example, tree
structures are useful for representing taxonomic hierarchies (in fact, some
knowledge representation languages use such tree-structure representations

For a comprehensive recent treatment of attachment see: K.L. Myers, Automatically generat-
ing universal attachments through compilation, in: Proceedings AAAI-90, Boston, MA (1990)
252-257.

Logic and artificial intelligence 45

explicitly as part of the language [5]). Various LISP ordering predicates
combined with appropriate directed-graph data structures are useful for repre-
senting transitive binary relations.

4.4. Reification o f theories

Sometimes we will want our machines to reason about (rather than with) the
sentences in its knowledge base. We may, for example, want them to reason
about the lengths of sentences or about their complexity. Our conceptualiza-
tions will thus have to acknowledge that things called sentences exist in the
world. Conferring existence on abstract concepts (such as sentences) is often

called reification.
We might reify whole theories. This will allow us to say, for example, that

some A 1 is more appropriate than is some A 2 when confronted with problems of
diagnosing bacterial infections. Scientists are used to having different--even
contradictory--theories to explain reality: quantum physics, Newtonian mech-
anics, relativity, wave theories of light, particle theories of light, and so on.
Each is useful in certain circumstances. Although scientists search for a
uniform, all-embracing, and consistent picture of reality, historically they have
had to settle for a collection of somewhat different theories. There is nothing in
the logicist approach that forces us, as machine designers, to use just one
conceptualization of the world. There is no reason to think AI would be any
more successful at that goal than scientists have been!

When theories are reified, metatheory (that is, a theory about theories) can
be used to make decisions about which local theory should be used in which
circumstances. For example, the metatheory might contain a predicate calculus
statement having an intended meaning something like: "When planning a
highway route, use the theory that treats roads as edges in a graph (rather
than, for example, as solid objects made of asphalt or concrete)". Metatheory
can also provide information to guide the inference procedures operating over
local theories. For example, we might want to say that when two inferences are
possible in some A1, the inference that results in the most general conclusion
should be preferred. Using metatheory to express knowledge about how to
control inference is consistent with the logicists' desire to put as much
knowledge as possible in declarative form (as opposed to "building it in" to the
functions mem and act).

Weyhrauch [58] has pointed out that the process of semantic attachment in a
metatheory can be particularly powerful. Commonly, even when no semantic
attachments are possible to speed reasoning in a theory, the problem at hand
can be dispatched efficiently by appropriate semantic attachment in the
metatheory.

Some critics of the logical approach have claimed that since anything can be
said in the metatheory, its use would seem to be a retreat to the same ad hoc

46 N.J. Nilsson

tricks used by less disciplined AI researchers. But we think there are generally
useful things to say in the metatheory that are not themselves problem
dependent. That is, we think that knowledge about how to use knowledge can
itself be expressed as context-free, declarative sentences. (Lenat's work has
uncovered the best examples of generally useful statements about how to use
knowledge [25-27].)

4.5. Other observations

Even though they frequently call the sentences in their knowledge bases
axioms, logicists are not necessarily committed to represent knowledge by a
minimal set of sentences. Indeed, some (or even most) of the sentences in
may be derivable from others. Since the "intelligence" of an agent depends on
how much usable declarative knowledge it has, we agree completely with those
who say "In the knowledge lies the power." We do not advocate systems that
rely on search-based derivations of knowledge when it is possible to include the
needed knowledge explicitly in the knowledge base. The use of very large
knowledge bases, of course, presupposes efficient retrieval and indexing tech-
niques.

The occasional criticism that logicists depend too heavily on their inference
methods and not on the knowledge base must simply result from a misunder-
standing of the goals of the logical approach. As has already been pointed out,
logicists strive to make the inference process as uniform and domain indepen-
dent as possible and to represent all knowledge (even the knowledge about
how to use knowledge) declaratively.

5. Challenging problems

5.1. Language and the world

Few would deny that intelligent machines must have some kind of characteri-
zation or model of the world they inhabit. We have stressed that the main
feature of machines designed using the logical approach is that they describe
their worlds by language. Is language (any language) adequate to the task? As
the writer Edward Abbey observed [1, p. x]:

Language makes a mighty loose net with which to go fishing for
simple facts, when facts are infinite.

A designer's intuitive ideas about the world are often difficult to capture in a
conceptualization that can be described by a finite set of sentences. Usually
these intuitive ideas are never complete at the time of design anyway, and the
conceptualization expands making it difficult for the sentences to catch up.

John McCarthy humorously illustrates this difficulty by imagining how one

Logic and artificial intelligence 47

might formulate a sentence that says that under certain conditions a car will

start. In English we might say, for example: " I f the fuel tank is not empty and
if you turn the ignition key, the car will start ." But this simple sentence is not
true of a world in which the carburetor is broken, or in which the fuel tank
(while not empty) is full of water, or in which the exhaust pipe has a potato
stuck in it, or Indeed, it seems there might be an infinite number of

qualifications that would need to be stated in order to make such a sentence
true (in the world the designer has in mind---or comes to have in mind). Of
course, just what it means for a designer to have a world in mind is
problematical; he probably didn't even think of the possibility of the potato in
the tailpipe until it was mentioned by someone else who happened to conceive

of such a world.
There seem to be two related problems here. One is that we would like to

have and use approximate, simple conceptualizations even when our view of
the world would permit more accurate and detailed ones. The approximate
ones are often sufficient for our purposes. Thus, even though we know full well
that the carburetor must be working in order for a car to start, in many
situations for which we want to reason about the car starting we don' t need to
know about the carburetor and can thus leave it out of our conceptualization.
Using theories (A's) corresponding to approximate conceptualizations and
successive refinements of them would seem to require the ability to have
several such at hand and a metatheory to decide when to use which.

Another problem is that even the most detailed and accurate conceptualiza-
tion may need to be revised as new information becomes available. Theories
must be revisable to accomodate the designer's changing view of the world. As
the machine interacts with its world, it too will learn new information which
will in some cases add to its theory and in other cases require it to be modified.

Science has similar problems. Scientists and engineers knowingly and useful-
ly employ approximate theories--such as frictionless models. Furthermore, all
of our theories of the physical world are falsifiable, and, indeed, we expect
scientific progress to falsify the theories we have and to replace them by others.
When we conclude something based on a current physical theory, we admit the
dependence of the conclusion on the theory and modify the theory if the
conclusion is contradicted by subsequent facts. Those who would argue that
logical languages are inappropriate for representing synthetic or contingent
knowledge about the world [39] would also seem to have to doubt the utility of
any of the languages that science uses to describe and predict reality. Merely
because our conceptualization of the world at any stage of our progress toward
understanding it may (inevitably will!) prove to be inaccurate does not mean
that this conceptualization is not in the meantime useful.

Some AI researchers have suggested techniques for making useful inferences
from an approximate, but not inaccurate, theory. We say that a theory is not
inaccurate if its models include the world as conceived by the designer. If a

48 N.J. Nilsson

theory is to be not inaccurate, it is typically impossible or overly cumbersome
to include the universal statements needed to derive useful sound conclusions.

We illustrate the difficulty by an example. Suppose that we want our

machine to decide whether or not an apple is edible. If J is to be not
inaccurate, we cannot include in it the statement (Vx)Apple(x)A Ripe(x)~
Edible(x) in the face of known exceptions such as Wormy(x) or Rotten(x). (We
trust that the reader understands that the mnemonics we use in our examples
must be backed up by sufficient additional statements in A to insure that these
mnemonics are constrained to have roughly their intended meanings.) Suppose
we cannot conclude from A that a given apple, say the apple denoted by apple1
is wormy or rotten; then we may want to conclude (even non-soundly)
Edible(Apple1). If later, it is learned (say through sensory inputs) that
Rotten(Apple1), then we must withdraw the earlier conclusion Edible(Apple1).
The original inference is called defeasible because it can be defeated by
additional information. Making such inferences involves what is usually called
nonmonotonic reasoning. (Ordinary logical reasoning is monotonic in the sense
that the set of conclusions that can be drawn from a set of sentences is not
diminished if new sentences are added.)

Several researchers have proposed frameworks and techniques for non-
monotonic reasoning. McDermott and Doyle [37, 38] have developed a non-
monotonic logic. Reiter [46] has proposed inference rules (called default rules)
whose applicability to a set of sentences /I depends on what is not in ~ as well

as what is. McCarthy [34] advocates the use of circumscription based on
minimal models. Ginsberg [13] uses multiple (more than two) truth values to
represent various degrees of knowledge. We will briefly describe one of these
approaches, that based on minimal models, in order to illustrate what can be
done. (See [47] for a thorough survey.)

Consider the general rule (Vx)Q(x)~ P(x). We may know that this rule is not
strictly correct without additional qualifications, and thus it cannot be included
in a machine's knowledge base without making the knowledge base inaccurate.
But we may want to use something like this rule to express the fact that
"typically" all objects satisfying property Q also satisfy property P. Or we may
want to use the rule in a system that can tolerate qualifications to be added
later.

One way to hedge the rule (to avoid inaccuracy) is to introduce the concept
of abnormality, denoted by the relation constant Ab [35]. Then we can say that
all objects that are not abnormal and that satisfy property Q also satisfy
property P:

(Vx)Q(x) A -TAb(x) ~ P(x).

Which objects are abnormal and which are not (i f we know these facts) can be
specified by other sentences in A. For example we may know that the objects
denoted by A and B are abnormal: Ab(A)/x Ab(B).

Logic and artificial intelligence 49

If we do not know whether or not something, say the object denoted by C, is
abnormal, we might be prepared to assume that it is not. Later, if we learn that

it is, we can add Ab(C) to zl.
How do we say that something is not abnormal unless it is required to be by

what we have already said in zl? One way to do this is to specify that the
intended model lies within a special subset of the models of A. The subset is
characterized by those models having the smallest possible sets of abnormal
objects consistent with what we know must be abnormal. These models are
called minimal with respect to Ab. McCarthy [34] has shown how to compute a
sentence 4, such that the models of A ^ ~b are just the models in this subset.

The formula 4' is called the circumscription formula of Ab in A.
In the case in which the only objects that can be proved abnormal are those

denoted by A and B, McCarthy's method (with an elaboration that allows the

predicate P to "vary") calculates ~ to be:

(Vx)Ab (x) --- [(x = A) v (x = B)] .

If we additionally knew that C # B and C ~ A, we could prove ~Ab(C). Then, if

Q(C), we could prove P(C).
Although the process of computing circumscription for general a is complex

(~b might even be a second-order predicate calculus formula), there are some
interesting special cases. Many of these have been investigated by Lifschitz [29]

and are also described in [12].

5.2. Change

An intelligent machine must know something about how it perceives the
world and about how its actions change the world. That is, it must know
something about see and effect. The function effect characterizes how the world
changes. If an agent is to perform appropriately in the world, it must be able to
anticipate and influence these changes. Although it sounds unnecessarily
tedious, an agent must know that after it moves from A to B, for example, it
will be at B. It must also know that, all other things being equal, other objects
will remain where they were before it moved to B. In summary, an agent must
have as part of its knowledge some idea of how effect changes the world.

Several approaches have been pursued. Most work has been done using a
conceptualization that includes objects called states. States are imagined as
instantaneous snapshots of the world. Change is characterized as a transition
from one state to another. Changes may occur as a result of actions on the part
of the intelligent machine; we want our machines to be able to compute what
actions they ought to perform in order that certain desirable states, called goal
states, result. A key problem in characterizing the effects of a given machine
action on the world involves how to specify which aspects of the world do not

change. This has been called the frame problem.

5(I N.J. Nilsson

The frame problem has been thoroughly treated in the literature. (See [7]
and [44] for collections of articles. The latter collection includes several that
discuss the problem from the standpoints of philosophy and cognitive psy-
chology.) In attempting to deal with the frame problem in their system called
STRIPS, Fikes and Nilsson [10] described the effects of a machine's actions by
listing those relations that were changed by the action. They assumed that
those relations not mentioned were not changed. Hayes [17, 18] introduced the
notion of histories in an attempt to define a conceptualization in which the
frame problem was less severe. McCarthy [35] and Reiter [46] proposed
nonmonotonic reasoning methods for dealing with the frame problem. In the
language of circumscription, their approaches assumed minimal changes consis-
tent with the relations that were known to change. However, Hanks and
McDermott [15] showed that a straightforward application of circumscription
does not produce results strong enough to solve the frame problem. In
response, Lifschitz [30] introduced a variant called pointwise circumscription.
He also proposed reconceptualization of actions and their effects that permits
the use of ordinary circumscription in solving the frame problem and the
qualification problem [31]. Shoham [51] proposed an alternative minimization
method related to circumscription, called chronological ignorance.

Although the frame problem has been extensively studied, it remains a
formidable conceptual obstacle to the development of systems that must act in
a changing world. This obstacle is faced by all such systems--even those whose
knowledge about the world is represented in procedures. The designer of any
intelligent machine must make assumptions (at least implicit ones) about how
the world changes in response to the actions of the machine if the machine is to
function effectively.

5.3. Uncertain knowledge

When one is uncertain about the world, one cannot specify precisely which
relations hold in the world. Nevertheless, one might be able to say that at least
one of a set of relations holds. Logical disjunctions permit us to express that
kind of uncertain knowledge.

Logical representations (with their binary truth values) would seem to be
inadequate for representing other types of uncertain knowledge. How do we
say, for example, "It is likely that it will be sunny in Pasadena on New Year's
day"? We could, of course embed probability information itself in the sen-
tence, and this approach and others have been followed. Attempts to fuzz the
crisp true/false semantics of logical languages have led to an active AI research
subspecialty [23, 43, 53].

The approach followed by [41], for example, is to imagine that a probability
value is associated with each of a set of possible conceptualizations (interpreta-
tions). The machine designer makes this assignment implicitly by composing a

Logic and artificial intelligence 51

set of first-order predicate calculus sentences each having a probability value.
Each of these values is the sum of the probabilities of those interpretations that
are models of the associated sentence. In this way the set of sentences with
their probabilities induce constraints on what the probabilities of the interpre-
tations can be. These constraints can then be used to calculate bounds on the
probabilities of other sentences about the world. This approach can be
computationally intractable, however, and many approximate methods for
dealing with uncertain knowledge are being explored and used.

Just as the logical approach to AI provides a coherent framework in which
many of the problems of designing intelligent machines can be clearly posed
and understood, we expect that some appropriate combination of logic and
probability theory will similarly aid our understanding of the problem of
reasoning with uncertain information.

5.4. Embedded systems

Those who will not reason
Perish in the act:
Those who will not act
Perish for that reason. (W.H. Auden [4, p. 42].)

To be effective in their environments, machines must both react appropri-
ately to sensory inputs in bounded time and reason, less hurriedly, about what
to do. Since logical reasoning may, in general, require unbounded time, these
two requirements place conflicting demands on the architecture of intelligent
machines. Combining the two abilities in a seamless and elegant architecture is
proving to be a difficult problem.

One might approach this problem either from the point of view of control
theory, in which case one needs to add symbolic reasoning abilities to the
inherent real-time characteristics of control systems; or from the point of view
of AI, in which case one needs to find a way to achieve real-time performance
in systems that are able to plan and reason. Very little research has been done
on the connection between reasoning mechanisms and their environments.
Instead, the need for real-time response and the supposed inefficiencies of
logical reasoning have inspired a number of AI researchers to explore action-
computation mechanisms that seem more related to control theory than to AI.

Rosenschein and Kaelbling [48] have proposed situated automata--finite
state machines that do not reason with explicit sentences but, rather, react
within a bounded time interval to sensory stimuli. These machines are com-
piled from declarative sentences specified by the designer. From the designer's
point of view, the machines can be said to know the propositions represented
by these sentences, but the sentences themselves are not explicitly represented
or reasoned with in the machine. In this approach, logical reasoning is done at
compile time, and the results of this reasoning are available at run time. (Even

52 N.J . Nilsson

though situated automata do not themselves perform explicit logical reasoning,
some include them within the logical approach to AI because logic plays such
an important role in their specification.)

Schoppers and Nilsson have each observed that in constructing a plan of
actions the search process finds not only a path from the starting situation to a
goal but finds several other paths as well. Ordinarily, these extraneous paths
are discarded. Schoppers [50] suggests that with modest extra effort the paths
from all possible starting states to a goal can be found during the plan-
generation process. These paths can be stored as a universal plan that can be
used to select appropriate actions in bounded time no matter how the
unpredictable environment might throw the system off its current path. Nilsson
[42] proposes that, in effect, multiple paths can be stored in a highly condition-
al plan structure called an action network consisting of a combinational circuit
somewhat like those occuring in situated automata. Both universal plans and
action networks share the virtue that actions appropriate to a wide range of
environmental conditions can be selected in bounded time. Like situated
automata, they pay for their improved runtime performance by investing extra
time at compile or design time and by using extra space (to store the plan).

Other examples of architectures that do not rely (at run time at least) on the
lumbering reasoning apparatus associated with explicit declarative representa-
tions can be found in the adaptive networks of the connectionists [49], in the
finite-state machines of Brooks [6], in the PENGI system of Agre and Chapman
[2], and in the plan nets of Drummond [9].

Good as they are for computing actions quickly however, systems that do no
logical reasoning at run time may sometimes perish in the act. Imagine a
Martian robot, for example, receiving a message from its Martian base that the
base will not be able to refuel robots for five hours beginning in two hours. It
would seem to be a reasonable strategy for robots to handle messages of this
sort by receiving them as declarative sentences that are to be combined with
other explicitly represented declarative knowledge and reasoned with to pro-
duce appropriate action. Anticipating what the appropriate responses should
be for all possible such messages would seem to present untractable compila-
tion and storage problems.

Connecting perception to reasoning and reasoning to action remains an
important problem. For action nets and situated automata, for example, this
problem becomes one of modifying the runtime system incrementally as new
declarative knowledge is added to the system. Drummond [9] proposes the use
of situated control rules generated by a planner to constrain the actions of a
plan net. Kaelbling [22] has proposed hierarchical systems in which the lower
levels are able to compute actions more quickly (if less intelligently) than the
higher ones. Under time pressure, if the higher levels have not finished their
more elaborate computations, the lower ones dominate.

I suspect that there are several other conceptual problems in connecting the

Logic and artificial intelligence 53

world to systems that reason with explicitly represented sentences. As a
columnist recently wrote [45] " . . . I sometimes worry about the men I know
who live alone. I picture some of them thinking out loud about a ham and
Swiss on rye, and then just sitting there, slowly starving to death. There's some
synapse missing, the one that links desire and action." Transforming the highly
indexical, situation-dependent information gleaned from sensors into context-
free representations, and then converting information in those representations
back into context-sensitive action, likely will involve "synapses" that have not
yet been adequately considered by the logicists.

6. Conclusions

Logic provides the vocabulary and many of the techniques needed both for
analyzing the processes of representation and reasoning and for synthesizing
machines that represent and reason. The fact that we discover elements of
reasoning and intelligent behavior that challenge the techniques of ordinary
logic is no reason to abandon the solid base that we have already built. On the
contrary, it appears that imaginative extensions to ordinary first-order logic are
successfully dealing with many of its purported inadequacies.

Logic itself (originally invented to help formalize and explain human reason-
ing) has evolved dramatically in the last 2000 years. Anyone who attempts to
develop theoretical apparatus relevant to systems that use and manipulate
declaratively represented knowledge, and does so without taking into account
the prior theoretical results of logicians on these topics, risks (at best) having to
repeat some of the work done by the brightest minds of the last two millenia
and (at worst) getting it wrong!

Of course, it may ultimately turn out that we cannot adequately and usefully
represent knowledge needed by intelligent machines in declarative sentences.
If we cannot, each application would seem to require a machine most of whose
knowledge has to be designed in to procedures specialized to the application.
Many of these specialized systems would have similar or identical bodies of
knowledge, but even if largely identical, each body would have to be separately
and specially (and thus expensively) crafted and re-crafted for each niche
system. There is good reason to recoil from that prospect. There are too many
niches! Considering the high payoff, the impressive results obtained so far, and
the lack of promising alternatives, the grand vision of the logicists appears to
me to be the approach of choice.

Acknowledgement

The author thanks the Palo Alto Laboratory of the Rockwell Scientific
Center for support. Several people provided helpful suggestions, including Jon

54 N.J. Nilsson

Doyle, Michael Genesereth, Carl Hewitt, David Kirsh, Jean-Claude Latombe,
John McCarthy, Devika Subramanian, Yoav Shoham, and many Stanford
graduate students.

References

[1] E. Abbey, Desert Solitaire (Ballantine, New York, 1971).
[2] P. Agre and D. Chapman, Pengi: An implementation of a theory of activity, in: Proceedings

AAA1-87, Seattle, WA (1987) 268-272.
[3] D.E. Appelt, Planning English Sentences (Cambridge University Press, Cambridge, 1985).
]4] W.H. Auden, Collected Shorter Poems: 1927-1957 (Random House, New York, 1966).
[5] R. Brachman, V. Gilbert and H. Levesque, An essential hybrid reasoning system: knowledge

and symbol level accounts of KRYPTON, in: Proceedings HCAI-85, Los Angeles, CA
(1985).

[6] R.A. Brooks, Intelligence without representation, Artif. lntell. 47 (1991) 139-159, this
volume.

[7] F. Brown, ed., The Frame Problem in Artificial Intelligence (Morgan Kaufmann, San Mateo,
CA, 1987).

[8] RR. Cohen and H.J. Levesque, Intention is choice with commitment, Artif. lntell. 42 (1990)
213-261.

[9] M. Drummond, Situated control rules, in: J. Weber, J. Tenenberg and J. Allen, eds.,
Proceedings of the Rochester Planning Workshop: From Formal Systems to Practical Systems,
Rochester. NY (1988).

[I0] R.E. Fikes and N.J. Nilsson, STRIPS: A new approach to the application of theorem proving
to problem solving, Artif. lntell. 2 (1971) 189-208.

[11] M.R. Genesereth, The use of design descriptions in automated diagnosis, Artif. lntell. 24
(1984) 411-436.

[12] M.R. Genesereth and N.J. Nilsson, Logical Foundations of Artificial Intelligence (Morgan
Kaufmann, San Mateo, CA, 1987).

[13] M. Ginsberg, Multivalued logics: a uniform approach to inference in artificial intelligence,
Comput. lntell. 4 (1988).

[14] B.J. Grosz, D.E. Appelt, RA. Martin and F.C.N. Pereira, TEAM: An experiment in the
design of transportable natural-language interfaces, Artif. lntell. 32 (1987) 173-243.

[15] S. Hanks and D. McDermott, Default reasoning, nonmonotonic logics, and the frame
problem, in: Proceedings AAAI-86, Philadelphia, PA (1986).

[16] P.J. Hayes, In defence of logic, in: Proceedings HCAI-77, Cambridge, MA (1977) 559-565.
[17] P.J. Hayes, The naive physics manifesto, in: D. Michie, ed., Expert Systems in the Micro-

Electronic Age (Edinburgh University Press, Edinburgh, 1979) 242-270.
[18] P.J. Hayes, The second naive physics manifesto, in: J.R. Hobbs and R.C. Moore, eds.,

Formal Theories" of the Commonsense World (Ablex, Norwood, NJ, 1985) 1-36; also in: R.
Brachman and H. Levesque, eds., Readings in Knowledge Representation (Morgan Kauf-
mann, San Mateo, CA, 1985).

[19] B. Hayes-Roth, A blackboard architecture for control, Artif. lnteU. 26 (1985) 251-321.
[20] J.R. Hobbs, ed., Commonsense Summer: final report, Rept. CSLI-85-35, Center for the

Study of Language and Information, Stanford University, Stanford, CA (1985).
[21] J.R. Hobbs and R.C. Moore, eds., Formal Theories of the Commonsense World (Ablex,

Norwood, N J, 1985).
[22] L.P. Kaelbling, An architecture for intelligent reactive systems, in: M. Georgeff and A.

Lansky, eds., Reasoning about Actions and Plans (Morgan Kaufmann, San Mateo, CA, 1987)
395-410.

[23] L.N. Kanal and J.F. Lemmer, eds., Uncertainty in Artificial Intelligence (North-Holland,
Amsterdam, 1986).

Logic and artificial intelligence 55

[24] K. Konolige, Belief and incompleteness, in: J.R. Hobbs and R.C. Moore, eds., Formal
Theories of the Commonsense World (Ablex, Norwood, NJ, 1985) 359-404.

[25] D.B. Lenat, The nature of heuristics, Artif. lntell. 19 (1982) 189-249.
[26] D.B. Lenat, Theory formation by heuristic search. The nature of heuristics II: Background

and examples, Artif. lntell. 21 (1983) 31-59.
[27] D.B. Lenat, EURISKO: A program that learns new heuristics and domain concepts. The

nature of heuristics III: Program design and results, Artif. lntell. 21 (1983) 61-98.
[28] D.B. Lenat and E.A. Feigenbaum, On the thresholds of knowledge, Artif. Intell. 47 (1991)

185-250, this volume.
[29] V. Lifschitz, Computing circumscription, in: Proceedings 1JCA1-85, Los Angeles, CA (1985)

121-127.
[30] V. Lifschitz, Pointwise circumscription: preliminary report, in: Proceedings AAAI-86, Phila-

delphia, PA (1986) 406-410.
[31] V. Lifschitz, Formal theories of action, in" F. Brown, ed., The Frame Problem in Artificial

Intelligence (Morgan Kaufmann, San Mateo, CA, 1987) 35-57.
[32] J. McCarthy, Programs with common sense, in: Mechanisation of Thought Processes, Proc.

Syrup. Nat. Phys. Lab. 1 (Her Majesty's Stationary Office, London, 1958) 77-84; also in: M.
Minsky, ed., Semantic Information Processing (MIT Press, Cambridge, MA, 1968) 403-410;
and in: R. Brachman and H. Levesque, eds., Readings in Knowledge Representation (Morgan
Kaufmann, San Mateo, CA, 1985).

[33] J. McCarthy, Ascribing mental qualities to machines, Tech. Rept. STAN-CS-79-725, AIM-
326, Department of Computer Science, Stanford University, Stanford, CA (1979).

[34] J. McCarthy, Circumscription--a form of non-monotonic reasoning, Artif. lntell. 13 (1980)
27-39; also in: B.L. Webber and N.J. Nilsson, eds., Readings in Artificial Intelligence
(Morgan Kaufmann, San Mateo, CA, 1982).

[35] J. McCarthy, Applications of circumscription to formalizing commonsense knowledge, Artif.
Intell. 28 (1986) 89-116.

[36] J. McCarthy, Mathematical logic in artificial intelligence, Daedalus: J. Am. Acad. Arts Sci.
(1988) 297-311.

[37] D. McDermott and J. Doyle, Non-monotonic logic I, Artif. lntell. 13 (1980) 41-72.
[38] D. McDermott, Non-monotonic logic II: Non-monotonic modal theories, J. ACM 29 (1982)

33 -57.
[39] D. McDermott, A critique of pure reason (with peer commentaries), Comput. lntell. 3 (1987)

151-237.
[40] R.C. Moore, A formal theory of knowledge and action, in: J.R. Hobbs and R.C. Moore,

eds., Formal Theories of the Commonsense World (Ablex, Norwood, N J, 1985).
[41] N.J. Nilsson, Probabilistic logic, Artif. lntell. 28 (1986) 71-87.
[42] N.J. Nilsson, Action networks, Unpublished working paper, Stanford University, Stanford,

CA (1988); also in: J. Weber, J. Tenenberg and J. Allen, Proceedings of the Rochester
Planning Workshop: From Formal Systems to Practical Systems, Rochester, NY (1988).

[43] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
(Morgan Kaufmann, San Mateo, CA, 1988).

[44] Z. Pylyshyn, The Robot's Dilemma: The Frame Problem in Artificial Intelligence (Ablex,
Norwood, N J, 1987).

[45] A. Quindlen, Life in the 30's, The New York Times (May 5, 1988).
[46] R. Reiter, A logic for default reasoning, Artif. lntell. 13 (1980) 81-132.
[47] R. Reiter, Nonmonotonic reasoning, in: Annual Reviews of Computer Science 2 (Annual

Reviews, Palo Alto, CA, 1987) 147-186.
[48] S.J. Rosenschein and L.P. Kaelbling, The synthesis of machines with provable epistemic

properties, in: J.Y. Halpern, ed., Proceedings of the 1986 Conference on Theoretical Aspects of
Reasoning about Knowledge (Morgan Kaufmann, San Mateo, CA, 1986) 83-98.

[49] D.E. Rumelhart, J.L. McClelland and the PDP Research Group, eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition 1: Foundations; 2: Psychological
and Biological Models (MIT Press, Cambridge, MA, 1986).

[50] M.J. Schoppers, Universal plans for reactive robots in unpredictable domains, in: Proceedings
IJCAI-87, Milan, Italy (1987).

56 N.J. Nilsson

[51] Y. Shoham, Reasoning about Change: lime and Causation J)'om the Standpoint o[Artificial
Intelligence (MIT Press, Cambridge, MA, 1988) Chapter 4.

[52] Y. Shoham and N. Goyal, Temporal reasoning in artificial intelligence, in: H. Shrobe, ed.,
Exploring Artificial httelligence (Morgan Kaufmann, San Mateo, CA, 1988) 419-438.

[53] E.H. Shortliffe, Computer-Based Medical Consultations: MYCIN (Elsevier, New York, 1976).
[54] B.C. Smith, The owl and the electric encyclopedia, Art~f. lntell. 47 (1991) 251-288, this

volume.
[55] P. Smolensky, On the proper treatment of connectionism, Behav. Brain Sci. (with peer

commentary) 11 (1988) 1-74.
[56] M.E. 8tickel, A nonclausal connection-graph resolution theorem-proving program, in: Pro-

ceedings AAAI-82, Pittsburgh, PA (1982) 229-233; also in: M. Stickel, A nonclausal
connection-graph resolution theorem-proving program, SRI AI Center Tech. Note 268, SRI,
Menlo Park, CA (1982).

[57] M.E. Stickel, A PROLOG technology theorem prover, in: Proceedings 1EEE Symposium on
Logic Programming, Atlanta City, NJ (1984) 211-217.

[58] R. Weyhrauch, Prolegomena to a theory of mechanized formal reasoning, Arti]~ lntell. 13
(1980) 133-170; also in: B.L. Webber and N.J. Nilsson, eds., Readings in Artificial Intelli-
gence (Morgan Kaufmann, San Mateo, CA, 1982).

[59] S. Winker, Generation and verification of finite models and counterexamples using an
automated theorem prover answering two open questions, J. ACM 29 (1982) 273-284.

[60] T. Winograd, Frame representations and the declarative/procedural controversy, in: D.
Bobrow and A. Collins, eds., Representation and Understanding: Studies in Cognitive Science
(Academic Press, New York, 1975) 185-210; also in: R. Brachman and H. Levesque, eds.,
Readings in Knowledge Representation (Morgan Kaufmann, San Mateo, CA, 1985).

[61] L. Wos, S. Winker, B. Smith, R. Veroff and L. Henschen, A new use of an automated
reasoning assistant: open questions in equivalential calculus and the study of infinite domains,
ArtiJ'. lntell. 22 (1984) 303-356.

