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What have we seen so far?

I Linear regression
I Solution through gradient descent

I Solution through Normal equations

I Regularization (Ridge, Lasso, Subset Selection)

I Linear classification
I Separating hyperplane

I Discriminative vs Generative classifiers
I Logistic regression
I Linear/Gaussian discriminant Analysis (GDA)

I Non parametric regression/classification
I Kernel methods (use in gradient descent)

I Support vector machines
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Practical Neural Networks and Backprop

I Consider the following (one hidden layer) neural network

yk(x) = σ
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
I For the moment we will consider a single binary output

I A common loss in classification with neural networks is the log
loss or binary cross entropy loss

L(θ) = − 1

N

N∑
i=1

ti log y(x ; w) + (1− ti ) log(1− y(x ; w))



Practical Neural Networks and Backprop

I Minimization of the binary cross entropy can be derived from
the MLE.

I If we view the neural network as outputing a probability that
for any point x i the target will be one, y(x ; w) = p, the
probability of observing a pair {x i , ti} is thus given by

p({x i , ti}) = pti (1− p)1−ti

= (y(x i ; w))ti (1− y(x i ; w))1−ti

I Now if we assume independent samples, we can write the
probability of observing the whole dataset as

p({x i , ti}) =
N∏
i=1

(y(x i ; w))ti (1− y(x i ; w))1−ti



Practical Neural Networks and Backprop

p({x i , ti}) =
N∏
i=1

(y(x i ; w))ti (1− y(x i ; w))1−ti

I Taking minus the log,

L(w) = −
N∑
i=1

ti log(y(x i ,w)) + (1− ti ) log(1− y(x i ; w))

we recover the binary cross entropy loss.
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p({x i , ti}) =
N∏
i=1

(y(x i ; w))ti (1− y(x i ; w))1−ti

I Taking minus the log,
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Backpropagation

I To learn the weights, we will adopt an SGD approach.

I We will use the notation a to encode the activations (input to
each neuron). E.g. for the inputs to the neurons of the first
hidden layer, we have

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0

I We will use the notation z to denote the output of each
neuron (output to the activation functions),

zj = σ(aj)



Backpropagation
I The derivative of the binary cross entropy with respect to y

can be computed easily (for one sample),

dL(w)

dy
=

−ti
y(x i ; w)

+
1− ti

1− y(x i ; w)

=
y(x i ; w)− ti

y(x i ; w)(1− y(x i ; w))

I A common choice for the activation function is the sigmoid
(as in logistic regression). In this case we have

yk(x i ; w) = σ(ak) =
1

1 + e−ak

In particular the derivative of y with respect to a is thus
simply σ′(a), which reads as

σ′(a) = −(1 + e−a)−2
d

da
(1 + e−a)

= ae−a(1 + e−a)−2



Backpropagation

I In particular the derivative of y with respect to a is thus
simply σ′(a), which reads as

σ′(a) = −(1 + e−a)−2
d

da
(1 + e−a)

= ae−a(1 + e−a)−2

= σ(a)(1− σ(a))

I At the output of the network, the (unique) activation can
expand from the outputs to each of the neurons from the
hidden layer as

a =
∑
j

w
(2)
j zj

I The zj are the ouptputs to each of the neurons.



Backpropagation

I The derivative of a the weights w
(2)
j is given by

∂a

∂w
(2)
j

= zj

I Now that we have ∂L
∂y , ∂y

∂a and ∂a
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, we can just use
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Backpropagation

I Combining the results above, we have

∂L(w)

∂ak
=

∂`

∂yk

∂y

∂ak
= yk(x i ; w)− ti ,k ≡ δk

I On the other hand we now know ∂ak
∂wk,j

= zj . We can thus

write

∂L(w)

∂w `
k,j

= z`j δ
`
k (1)

I Then note that for any `, we can backpropagate the
information as
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Backpropagation

I Then note that for any `, we can backpropagate the
information as
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=
∑
k

∂L(w)

∂a`k

∂a`k
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I Using the expressions that we derived earlier, we can thus
write

δ`−1j ≡ ∂L(w)

∂a`−1j

=
∑
k

δ`k

(
σ′(a`−1j )w `

k,j

)
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where we use

∂a`k
∂a`−1j

=
∂
∑

j w
`
kjσ(a`−1j )

∂a`−1j

= w `
kjσ
′(a`−1j ).



Backpropagation

I In short, the backpropagation algorithm can thus read as

1. Apply an input sample x i through the network and compute
the activations a`j for all hidden and output layers

2. Evaluate all output δ`k . Then backpropagate those δ`k to find
the δ`−1j for each hidden unit

δ`−1j ≡ ∂L(w)

∂a`−1j

=
∑
k

δ`k

(
σ′(a`−1j )w `

k,j

)
3. Get the final derivatives with respect to the weight by using

∂L(w)

∂w `
ji

=
∂L(w)

∂a`j

∂a`j
∂w `

ij

= δ`j zi



Backpropagation

I Often we will also consider an additional `2 penalty term. So
that the total loss then reads as

L(w) = − 1

N

N∑
i=1

ti log(y(x i ; w)) + (1− ti ) log(1− y(x i ; w))

+
λ

2N

m∑
j=1

w2
j

I Note that the contribution to the gradient arising from the
regularization term can just be added to the backpropagation
result.

I We typically choose to use a parameter norm penalty that
penalizes only the weights of the affine transformation at each
layer and leaves the biases unregularized. The biases typically
require less data to fit accurately than the weights.


