
Introduction to Machine Learning.
CSCI-UA 9473, Zoom 1.

Augustin Cosse

Ecole Normale Supérieure, DMA & NYU

2020

What have we seen so far?

I Linear regression
I Solution through gradient descent

I Solution through Normal equations

I Regularization (Ridge, Lasso, Subset Selection)

I Linear classification
I Separating hyperplane

I Discriminative vs Generative classifiers
I Logistic regression
I Linear/Gaussian discriminant Analysis (GDA)

I Non parametric regression/classification
I Kernel methods (use in gradient descent)

I Support vector machines

This week

• Neural Networks

• Current applications

• History

• Universal Approximation Properties

• Training/Backpropagation

• Local mins and symmetries/ regularization

Reminders

I Linear regression = linear combination of fixed (possibly non
linear) basis functions

Y = β0 +
d∑

k=1

βkXk

Y = β0 +
d∑

k=1

βkφk(X)

I Linearity in the parameters leads to interesting properties such
as closed form solution, computational tractability,...

Reminders

I The difficulty stems from the fact that basis functions φi (X)
are fixed before training

I For advanced models, the number of such basis functions
grows rapidly with the dimension of the space

I The model must be reset each time a new point is being
added to the training set

Reminders

I One solution was to use non parametric models such as SVMs

I .. But those grow in complexity with the size of the training
set. In good frameworks, there are few support vectors, but in
the worst case, the number of support vectors is the number
of training samples

I In NLP for example, SVM classifiers with 10,000 support
vectors is not uncommon

...

Neural Networks: The biological inspiration

(E. Roberts, Stanford, C. Stergiou & D. Siganos, Imperial College)

I Much is still unknown about how the brain train itself to
process information

I A biological neuron collects signals from other neurons
through fine structures called dendrites

I The neuron then sends spikes of electrical activity through a
long stand named axon which splits into thousands of
branches

I At the end of each branch, a structure called synapse converts
the activity from the axon into electrical effects that inhibit or
excite acitivity in the connected neuron

Neural Networks: The biological inspiration

I When a neuron receives excitatory input that is sufficiently
large compared to its inhibitory inputs, it sends a spike of
electrical activity down its axon

I Learning results from changes in the strength of the synapse
(e.g. past patterns of use)

Haykin,Neural Networks
Learning Machines

Neural Networks: From Biology to Neural Nets

I The original idea is to extract the original features of neurons
and their interconnections. An artificial neuron is a device
with many inputs and one output

x2 w2

∑
φ(·)

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Neural Networks: From Biology to Neural Nets
I Just as other ML algorithms, the artificial neuron has two

modes of operation: a training mode and a test mode

I In training mode, the neuron learns to fire or not for specific
input patterns. In the test mode, the firing is controled by the
firing rule which was learned at training

x2 w2

∑
φ(·)

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Neural Networks: From Biology to Neural Nets

x2 w2

∑
φ(·)

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

(Single Unit) y = φ

 3∑
j=1

wjxj + b



Neural Networks: From Biology to Neural Nets

I The function φ(〈w , x〉+ b) is called Ridge function and it
varies only in the direction defined by w

I The general regression model y =
∑M

m=1 φm(wT
mx) is known

as Projection pursuit Regression (PPR) as the input to φ is
the projection of x onto w

x2 w2

∑
φ(·)

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Interlude: The Perceptron

I Consider the separating
hyperplane β0 + βTx

I x1 and x2 belong to the
plane if they satisfy

β0 + βTx1 = β0 + βTx2

I We thus have
βT (x1 − x2) = 0 for all
x1, x2 in the plane

I β (β∗ = β/‖β‖) is the
vector normal to the
hyperplane

H,T,F, Elem. of Stat. Learn.

I The signed distance of a
point x to the hyperplane is
defined as

(β∗)T (x − x0)

=
1

‖β‖
(βTx + β0)

I Points that are located
above thus lead to positive
values βTx + β0 > 0

I Points that are located
below lead to negative
values βTx + β0 < 0 H,T,F, Elem. of Stat. Learn.

I A separating plane thus
gives a natural way to
associate positive or
negative labels to points

I For a two class classification
problem, we can look for the
plane that gives positive
labels to one class and
negative labels to the other

I This idea leads to the
perceptron algorithm of
Rosenblatt H,T,F, Elem. of Stat. Learn.

I The perceptron thus simply
reads as

y(x) = f (β0 + βTx)

Where

f (a) =

{
+1, a ≥ 0
−1, a < 0

I During training, we
associate +1 labels to points
in cluster C1 and −1 labels
to points in cluster C2 H,T,F, Elem. of Stat. Learn.

I In the perceptron, a point in C1
(yi = +1) is thus misclassified
if βTx i + β0 < 0

I Generally we would like all
points to satisfy

yi (β
Tx i + β0) > 0

I so we minimize

−
∑
i∈M

yi (β
Tx i + β0)

(contributions should be ≥ 0)
H,T,F, Elem. of Stat. Learn.

Perceptron

(Perceptron) D(β, β0) = −
∑
i∈M

yi (β0 + βTx i)

I How do we train the perceptron?

I One way is to use stochastic gradient descent (we will come
back to that idea later)

I General idea (perceptron learning algorithm)

I Choose initial vector of prefactors β

I Then for each misclassified points xn, do[
βk+1

βk+1
0

]
←
[

βk

βk
0

]
− η∇Dn(β, β0), Dn = yn(β0 + βTxn)

Perceptron: intuition

Perceptron w/
gen. features φ(X)

D(β, β0) = −
∑
i∈M

yi (β0 + βTφi)

[
βk+1

βk+1
0

]
←
[
βk

βk0

]
− η∇Dn(β, β0), Dn = −yn(β0 + βTφ(xn))

if no intercept βk+1 ← βk + ηφnyn

I Perceptron convergence Theorem: If there exists an exact
solution (data is linearly separable), then the perceptron
algorithm is guaranteed to find an exact solution in a finite
number of steps.

Perceptron: more intuition

Bishop, Pattern Recogn. and ML.

I Let us assume no
intercept (data has been
centered)

I For each misclassified
points xn (resp. φ(Xn)),
the algorithm adds the
pattern of the
misclassified point to the
weight vector β

− (βk+1)Tφnyn

=− (βk)Tφnyn

− (φnyn)Tφnyn

<− (βk)Tφnyn

Neural Networks: activation functions

1 0 1
input

1

0

1

ou
tp

ut
Linear

1 0 1
input

1

0

1

ou
tp

ut

Step

10 0 10
input

0

1

ou
tp

ut

Logistic (1/(1 + e x))

10 0 10
input

1

0

1

ou
tp

ut

Hyperbolic Tangent

10 0 10
input

1
0
1

ou
tp

ut

ArcTangent

10 0 10
input

0

10

ou
tp

ut

Rectified Linear Unit (ReLU)

10 0 10
input

0

10

ou
tp

ut

Exponential LU

10 0 10
input

0

10

ou
tp

ut

Parametric ReLU

10 0 10
input

0

10

ou
tp

ut

softPlus (log(1 + ex))

How to choose the activation function?

I A good choice is the Relu

I If the network suffers from dead neurons during training, then
you can switch to leaky ReLu or Maxout

1958

RosenblattMcCulloch
and Pitts

1943

Bernard Widrow

Marcian Hoff

1962 1969
Progression Degression

Marvin Minsky

Seymour Papert
I 1943. In order to describe how neurons in the brain might

work, McCulloch and Pitts model a simple neuron using
electrical circuits (thresholded logic unit)

I 1958. Rosenblatt develops the perceptron (first precursor to
modern neural nets)

1958

RosenblattMcCulloch
and Pitts

1943

Bernard Widrow

Marcian Hoff

1962 1969
Progression Degression

Marvin Minsky

Seymour Papert
I 1958. Together with Rosenblatt’s perceptron come the

learning rule and the convergence Theorem (1962).

”[The perceptron is] the embryo of an electronic computer
that [the Navy] expects will be able to walk, talk, see, write,

reproduce itself and be conscious of its existence.”

1958

RosenblattMcCulloch
and Pitts

1943

Bernard Widrow

Marcian Hoff

1962 1969
Progression Degression

Marvin Minsky

Seymour Papert

I 1959-1962. Widrow and Hoff develop models called ADALINE
and MADALINE ((Multiple ADAptive LINear Elements)) to
recognize binary patterns. The system is still in commercial
use.

1958

RosenblattMcCulloch
and Pitts

1943

Bernard Widrow

Marcian Hoff

1962 1969
Progression Degression

Marvin Minsky

Seymour Papert
I Adaline = Perceptron trained on continuous inputs,

w ← w + η(t − σ(wTφ(x)))φ(x) Perceptron

w ← w + η(t − (wTφ(x)))φ(x) ADALINE

1958

RosenblattMcCulloch
and Pitts

1943

Bernard Widrow

Marcian Hoff

1962 1969
Progression Degression

Marvin Minsky

Seymour Papert
I 1969. Marvin Minsky questions the ability of the percetron

[...] I started to worry about what such a machine could not
do. [...] it could tell ‘E’s from ‘F’s, and ‘5’s from ‘6’s. But
when there were disturbing stimuli near these figures that

weren’t correlated with them the recognition was destroyed.

1958

RosenblattMcCulloch
and Pitts

1943

Bernard Widrow

Marcian Hoff

1962 1969
Progression Degression

Marvin Minsky

Seymour Papert
I 1969 (cont.). Together with Seymour Papert, Minsky writes

the book ”Perceptrons” that kills the perceptron. They prove
that the perceptron is unable to learn the XOR function.

I Not clear yet how to train Multi-layers perceptrons.

I Research and funding go down.

1958

RosenblattMcCulloch
and Pitts

1943

Bernard Widrow

Marcian Hoff

1962 1969
Progression Degression

Marvin Minsky

Seymour Papert

I (1963). In parallel to those more difficult times, the idea of
backpropagation starts to appear (through the work of Arthur
Bryson) but does not receive a lot of attention at the time.

1986

Ronald Williams
David Rumelhart
Geoffrey Hinton

1995
Progression Degression

V.Vapnik
C.Cortes

1998

Y. LeCun

I 1986. The idea of backpropagation reappears through a paper

Learning representations by back-propagation errors.

published in Nature by Rumelhart, Williams and Hinton.
Neural Networks with many hidden layers can be effectively
trained by a relatively simple procedure. New extension to the
perceptron (which had no ability to learn non linear functions)

1986

Ronald Williams
David Rumelhart
Geoffrey Hinton

1995
Progression Degression

V.Vapnik
C.Cortes

1998

Y. LeCun

I 1986. Around the same time, it is shown that neural networks
have the ability to learn any function (Universal
Approximation Theorem)

I Neural nets get back on track

I But there are still many open questions: Overfitting? Optimal
structure (Number of neurons, layers) Bad local mins?

1986

Ronald Williams
David Rumelhart
Geoffrey Hinton

1995
Progression Degression

V.Vapnik
C.Cortes

1998

Y. LeCun

I (1995). Support Vector Machines are introduced by V. Vapnik
and C. Cortes. SVMs have shallow architectures.

I Graphical models are becoming increasingly popular

I Together Graphical models and SVMs almost kill research on
Artificial Neural Networks

1986

Ronald Williams
David Rumelhart
Geoffrey Hinton

1995
Progression Degression

V.Vapnik
C.Cortes

1998

Y. LeCun

I Training deeper networks give poor results..

I (1998) LeCun introduces deep convolutional neural networks.

2006
Progression

2012

Alex Krizhevsky
Geoffrey Hinton
Ilya Sutskever

Y. Bengio
Ian Goodfellow

I (2006). Deep Learning appears as a rebranding of ANN

I (2006). Deep Belief Networks (Hinton et al.)

I (2007) Deep Autoencoders (Bengio et al.)

2006
Progression

2012

Alex Krizhevsky
Geoffrey Hinton
Ilya Sutskever

Y. Bengio
Ian Goodfellow

I Neural networks become increasingly popular following
massive usage of GPUs

I (2012). This trend is illustrated by the use of AlexNet for
image classification (Krizhevsky, Sutskever and Hinton)

Universal approximation

I For M sufficiently large, The simple Projection Pursuit
Regression model (PPR) can approximate any function in Rp.

I This result is known as the Universal Approximation Theorem

I The combination ”non linear activation function” + ”linear
function of the inputs” is part of a class of functions called
universal approximators

Universal approximation

x1

x2

x3

x4

... F (x ,w)

(Infinite)
Hidden

layer

Input
layer

Output
layer

Universal Approximation Theorem (Haykin 1994)

I Let φ(·) denote a nonconstant, bounded and
monotone-increasing continuous function.

I Let Im0 denote the m0 dimensional unit hypercube [0, 1]m0 .

I Let C(Im0) denote the space of continuous functions on Im0 .

Then for any function f ∈ C(Im0) and ε > 0, there exists an integer
M and sets of real constants αi , bi and wij where i = 1, . . . ,M and
J = 1, . . . , d such that if we define

F (x1, . . . , xd) =
M∑
i=1

αiφ

 d∑
j=1

wijxj + bi


we have |F (x1, . . . , xd)− f (x1, . . . , xd)| < ε

for all x1, x2, . . . , xd that lie in the input space.

Many possible architectures

One (hidden) layer

x1

x2

x3

x4

y(x ,w)

Hidden
layer

Input
layer

Output
layer

Deep neural network

x1

x2

x3

x4

F (x ,w)

How do we train? (I)

I To train the network, we minimize the empirical risk function.
For a given training set {x i , yi} and a network with weights
w , the loss/Empirical risk reads as (as usual there is a
statistical intuition for that loss)

E (w) =
1

2

N∑
i=1

‖y(x i ,w)− ti‖2

I The general approach at minimizing functions such as `(w) is
to start from some initial value w and then follow the
gradient to minimize E .

wk+1 ← w (k) − η∇E (w (k))

How do we train? (II)

I Minimizing the empirical risk directly is often expensive
because the training set of input-output pairs can be very
large

I When dealing with practical problems, we will in general not
apply gradient descent directly on those function.

I An alternative known as stochastic gradient descent or
sequential gradient descent (due to LeCun) relies on the
independence of the samples and view the empirical risk as a
sum of N independent contributions.

I This approach then optimizes each of those terms sequentially
rather than jointly resulting in iterations of the form

w (k+1) = w (k) − η∇En(w (k)), n = 1, . . . ,N.

How do we train? some vocabulary

I Batch gradient descent = use all the data at once

I Minibatch = use subsets

I Epoch = one pass over the full training data

How do we train? Backpropagation

Bishop, Pattern Recognition and ML

I Consider the simple two layers neural net

yk(x ,w) = h

 N∑
j=1

w
(2)
k,j h

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0



How do we train? Backpropagation

I Computing the gradient of a complex nested function
involving a large number of layers is painful.

I In practice, optimization relies on an idea called
backpropagation. In backpropagation, the information is
propagated through the network first forward and then
backwards in order to update the weights.

I The method proceeds in two steps,
I During the first step, the error vector containing the residuals

is propagated backwards in the network to evaluate the
derivatives

I During the second step, the derivatives that were computed in
the first step are used to update the weights.

How do we train? Backpropagation
I For an empirical risk function which reads as a sum of M

independent contributions,

E =
M∑

m=1

Em,

I In the sequential framework, we can focus on a single Em. In
a NN, each unit computes a weighted sum sj of the inputs,

aj =
∑
i

wjizi

The sum is then transformed through the activation function
h.

I Applying the chain rule, we get

∂Em

∂wji
=
∂Em

∂aj

∂aj
∂wji

How do we train? Backpropagation

I Note that

∂aj
∂wji

= zi

I If we let Em to denote the minbatch empirical risk function

Em =
1

2

∑
k

(yn,k(x ,w)− tn,k)2

I The gradient w.r.t the weights appearing in the last layer can
thus read as

∂Em

∂ak
= (yn,k − tn,k) = δn,k

How do we train? Backpropagation

I Moreover, all the other derivatives w.r.t the an,` (of layer `)
can be computed using the chain rule

∂Em

∂an−1,`
=

J∑
j=1

∂Em

∂an,j

∂an,j
∂an−1,`

I The relation between the inputs an,j from the nth layer and
the inputs an−1,j from the previous (n − 1) layer reads as

an,k = 〈w , h(an−1〉) =
J∑

j=1

w
(n−1)
k,j h (an−1,j)

How do we train? Backpropagation

I The relation between the inputs an,j from the nth layer and
the inputs an−1,j from the previous layer reads as

an,k = 〈w , h(an−1〉) =
J∑

j=1

w
(n−1)
k,j h (an−1,j)

I From this, we get the equation

∂an,k
∂an−1,j

=
J∑

j=1

w
(n−1)
k,j h′(an−1,j)

I Which we can substitute in the gradient ∂an−1,`Em

δn−1,` =
∂Em

∂an−1,`
=

J∑
j=1

∂Em

∂an,j

∂an,j
∂an−1,`

=
J∑

j=1

h′(an−1,j)w
(n−1)
k,j δn,j

Backpropagation (summary)

I Propagate the feature vectors from the training set forward
and compute all the outputs to the activation functions a`,j as
well as the derivatives h′(aj).

I Evaluate the output δn,k = (tk − yk)

I Backpropagate those δn,k trough the chain rule

I Once you have the δ`,j for all layers ` and indices j , compute
the derivatives of the empirical risk by using

∂Em

∂wij
= δjh(an−1,i)

