
Mathematics for Machine Learning

NYU Paris, CSCI-UA 9473

Augustin Cosse

This note provides a summary of the mathematics needed for an introductory class in machine
learning. The version is temporary. Please direct any comments or questions to acosse@nyu.edu
or acosse@ens.fr

1 Notations

R Real numbers
〈·, ·〉 Inner product, 〈v,w〉 =

∑n
i=1 viwi, 〈A,B〉 =

∑n
i=1

∑m
j=1AijBij

Tr(A) Trace of a matrix Tr(A) =
∑n
i=1Aii

N (µ, σ2) Normal distribution with mean µ, variance σ2 (see below)
A ∝ B A Proportional to B. We will use this symbol often when considering Bayes theorem

with uniform priors. For example we will often write p(θ|x) ∝ P (x|θ)p(θ)
where we neglect the normalizing constant P (x).

δ(x = k) Indicator function, δ(x = k) = 1 if x = k and 0 otherwise
D Usually used to represent a dataset, D = {xi, yi}
φ(x) For a given prototype x, we usually reserve the notation φ(x)

to denote the corresponding feature vector of x
∂f
∂xi

partial derivative of f(x1, . . . , xN) with respect to the variable xi

∇f(x) gradient, ∇f(x) = (∂f∂x1
, . . . , ∂f∂xn

)

Table 1: Notations

Contents

1 Notations . 1

2 Linear algebra . 2

3 Differential Calculus . 3

4 Statistics and probability . 4

5 Probabilistic classifiers . 8

6 Optimization . 10

7 Halfspaces and hyperplanes . 12

8 Regression and regularization . 13

9 Kernels . 16

10 Support Vector Machines (SVM) . 19

11 Neural Networks . 20

1

2 Linear algebra

Given a matrix A ∈ Rm×n,

A =

a11 a12 . . . a1n
a21 a22 . . . a2n
...

. . .
...

am1 am2 . . . amn

 (1)

we define its transpose as the matrix AT ∈ Rn×m whose jth column is defined as the jth row of
A, i.e.

AT =

a11 a21 . . . an1
a12 a22 . . . an2
...

. . .

a1m . . . an−1,m anm

 (2)

If A and B are m× n matrices, we have the following properties

• (AT)T = A

• (A+B)T = AT +BT

• (αA)T = αAT

• (AB)T = BTAT

Definition 1 (PseudoInverse). Given a matrix A, the pseudo inverse is defined as the matrix
A+ that satisfies the following conditions

AA+A = A (3)

A+AA+ = A+ (4)

(AA+)T = AA+ (5)

(A+A)T = A+A (6)

When the matrix ATA is invertible, the pseudo inverse can be defined as (ATA)−1AT

2.1 Norms and inner products

Given two vectors v ∈ Rn and w ∈ Rn, one can define an inner product as

v ·w = 〈v,w〉 =

n∑
i=1

viwi (7)

Genrally speaking, a function 〈·, ·〉 is an inner product if it satisfies the following properties

• 〈x, x〉 ≥ 0, 〈x, x〉 = 0 ⇐⇒ x = 0 (positivity)

• 〈x, y〉 = 〈y, x〉 (symmetry)

• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (additivity)

• 〈αx, y〉 = α〈x, y〉, for all α ∈ R (homogeneity)

2

So far, we have discussed inner products for vectors, but it is also possible to define an inner
product on matrices. A standard inner product can be defined in a similar way on matrices
X,Y ∈ Rm×n,

〈X,Y 〉 = Tr(XTY) =

m∑
i=1

n∑
j=1

XijYij (8)

Here we used the notation Tr(A) to denote the trace of a square matrix A ∈ Rn×n, i.e. Tr(X) =∑n
i=1Aii.

Another important function is the norm. A norm is a function f : Rn 7→ R anf which has
the following properties

• f(x) ≥ 0, f(x) = 0 ⇐⇒ x = 0 (positivity)

• f(αx) = |α|f(x), ∀α ∈ R (homogeneity)

• f(x+ y) ≤ f(x) + f(y) (triangle inequality)

Examples of norms include

• The `2 norm: ‖v‖2 =
√∑n

i=1 v
2
i

• The `1 norm: ‖v‖1 =
∑n
i=1 |vi|

• The `∞ norm: ‖v‖∞ = maxi |vi|

• More generally, the `p norms are defined for p ≥ 1 as ‖v‖p = (
∑n
i=1 |vi|p)

1/p

Just as for vectors, one can defined norms on the vectors. Those norms will satisfy the same
properties. The most popular one is the Frobenius norm

‖A‖F = ‖A‖2 =

√√√√ n∑
i=1

n∑
j=1

A2
i,j =

√
Tr(ATA) (9)

In fact given any inner product (on vectors or matrices), one can define an ”induced” norm
by letting f(v) = ‖v‖ =

√
〈v,v〉

3 Differential Calculus

Given a multivariate scalar function f(x), x ∈ Rn, one defines the gradient of the function as the
vector encoding the derivatives of the function f with respect to each of the component of x, i.e.,

∇f(x) =
∂f

∂x
=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
(10)

The Hessian matrix of a multivariate function f Rn 7→ Rn, is the matrix encoding all second
order partial derivatives of f ,

∇2f =

∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n

 (11)

Compactly we can write

H = ∇2f =
∂2f

∂xi∂xj
(12)

3

3.1 Matrix differentiation

Consider the inner product 〈v,w〉. When considering the derivative of a function f(A),A ∈ Rm×n

with respect to any matrix A, we will use the abridged notations ∂f(A)
∂A to denote the m×n matrix

encoding the first order derivatives of the function f with respect to the entries of the matrix A,
i.e.

∂f(A)

∂A
=

∂f(A)
∂a11

∂f(A)
∂a12

. . . ∂f(A)
∂a1m

∂f(A)
∂a21

∂f(A)
∂a2,2

. . . ∂f(A)
∂a2m

∂f(A)
∂a31

. . .
...

∂f(A)
∂am1

. . . ∂f(A)
∂am,n−1

∂f(A)
∂amn

 (13)

4 Statistics and probability

4.1 Probability

Definition 2. Given a sample space S and an associated algebra B, a probability function is a
function P with a domain B that satisfies

• P (A) ≥ 0 for all A ∈ B

• P (S) = 1

• If A1, A2, . . . ∈ B are pairwise disjoint, then P (∪∞i=1Ai) =
∑∞
i=1 P (Ai)

Theorem 1. If P is a probability function and A is any set in B, then

• P (∅) = 0, where ∅ is the empty set

• P (A) ≤ 1

• P (Ac) = 1− P (A)

Theorem 2. if P is a probability function and A and B are any sets in B, then

• P (B ∩Ac) = P (B)− P (A ∩B)

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

• If A ⊂ B, then P (A) ≤ P (B).

Definition 3. If A and B are events in S, and P (B) > 0, then the conditional probability of A
given B, written P (A|B) is

P (A|B) =
P (A ∩B)

P (B)
(14)

Given definition (3), it is easy to see that P (A∩B) = P (A|B)P (B) = P (B∩A) = P (B|A)P (A)
(this idea is sometimes known as the chain rule). The generalization of this gives Bayes’ rule:

Theorem 3 (Bayes’ rule). Let A1, A2, . . . be a partition of a sample space, and let B be any set.
Then, for each i = 1, 2, . . .,

P (Ai|B) =
P (B|Ai)P (Ai)∑∞
j=1 P (B|Aj)P (Aj)

(15)

(the denominator is simply the expansion P (B) =
∑∞
j=1 P (B|Aj)P (Aj))

4

Definition 4 (Independence). Two events A and B are statistically independent if

P (A ∩B) = P (A)P (B) (16)

Definition 5. A collection of events A1, . . . , An are mutually independent if for any subcollection
Ai1 , . . . , Aik , we have

P

 k⋂
j=1

Aij

 =

k∏
j=1

P (Aij) (17)

4.2 Random variables

The formal definition of a random variable is as a function from a sample space into the real
numbers.

Definition 6 (Random variable, informal). A random variable is a function from a sample space
into the real numbers

It is important to understand that the set of random variables includes the samples themselves
as one can of course choose the random variable to match a sample onto the value of this sample.
However, the probability is only defined on the sample space. For example, a simple Gaussian
random variable X is a function from the sample space S ≡ (−∞,∞) into this same sample space
(or if you prefer the value of the sample). I.e. X(si) = si in this case. But the definition is
more general and one could for example define another random variable Y = X2 now the random
variable is not the identity anymore. It a function which take samples from the sample space S
and raise them to the power 2. The connection to the sample space is important because the
notion of probability P is defined only on this sample space. I.e we only know how likely an event
si is, we don’t know about X(si). It is however possible to define an induced probability on the
random variable X, by using P ,

PX(X ∈ A) = P ({s ∈ S : X(s) ∈ A}) (18)

In words, we look at the samples for which X(s) ∈ A and we define the probability of the event
X ∈ A from the probability of the corresponding sample.

We are now ready to introduce the notions of cumulative distribution function (cdf), proba-
bility mass function (pmf) and probability density function (pdf).

Definition 7. The cumulative distribution function or cdf of a random variable X of a random
variable X denotes FX(x), is defined by

FX(x) = P (X ≤ x), for all x (19)

Definition 8. The probability mass function (pmf) of a discrete random variable X is given by

fX(x) = P (X = x), for all x (20)

Definition 9. The probability density function or pdf, fX(x) of a continuous random variable X
is the function that satisfies

FX(x) =

∫ x

−∞
fx(t) dt, for all x (21)

4.3 Classical PDFs

We start by listing some important distributions:

• The Gaussian Distribution is the most popular distribution in statistics as it is used to

5

• The Binomial distribution (which we write Bin(k|n,θ)) is used to represent the probability
of observing the positive/successful outcomes (the probability of success is given by θ) that
repeats itself k times over n successive trials.

Bin(k|n, θ) =

(
n

k

)
θk(1− θ)n−k (22)

The first factor encode the number of possibilities of choosing k elements among the n
without replacement. (

n

k

)
=

n!

(n− k)!k!
(23)

The mean and variance for this distribution are given by µ = nθ and σ2 = nθ(1− θ)

• The Bernoulli distribution. The Bernoulli distribution is defined on a binary variable. I.e if
we consider a single experiment (tossing a coin) with only two possible outcomes which are
encoded by the variable y = {1, 0} and appear with probability p and 1− p respectively. to
encode the probability of an outcome 0 or 1 we can thus just raise the probability p to the
power y, as show below. This gives the Bernoulli pdf

Ber(x|θ) = θy(1− θ)1−y (24)

(25)

This is also sometimes written

Ber(x|θ) = θδ(y=0)(1− θ)δ(y=1) (26)

(27)

Where δ(C) = 1 if the condition C is satisfied.

• Categorical distribution or Multinoulli distribution. When considering a variable with K
possible states (e.g. a dice with 6 faces), we will often encodes those states through dummy
variables. This means that for example for a variable that can take three different values,
y = 1, y = 2 or y = 3 (we will see later that this applied to features or classes in classification
problems), we would encode each of these feature through the 3-tuples t = (1, 0, 0) (y = 1),
t = (0, 1, 0) (y = 2) and t = (0, 0, 1) (y = 3). If we use θj = pj , j = 1, . . . , 3 to denote
the probability to get each feature, the total probability density function can now read
compactly as

Cat(x|θ) = Mu(x|θ) = p(x|θ) =

K∏
j=1

θ
tj
j = θt11 . . . θtKK = θt (28)

• The Laplace distribution is characterized by ”fatter” tails than the Gaussian distribution
(i.e the probability of getting values that are very different from the mean will be higher in
the Laplace distribution). The pdf of the Laplace distribution reads as

p(x|µ, β) =
1

2β
exp(−|x− µ|

β
) (29)

one way to see this is that in the Laplace distribution the argument of the exponential is
the absolute value whether in the the Normal distribution, the argument is squared which
implies a faster decrease in the pdf for large values of the deviation to the mean, |x− µ|.

4.4 MAP and MLE

This part gives a very basic introduction to the difference between the Frequentist and Bayesian
notions of estimators. For more details see [1]

6

Definition 10. A point estimator is any function of the sample W (x1, . . . , xn)

The most popular method to derive an estimator on the parameters of a distribution is the
method of maximum likelihood. For a given probability distribution p(xi|θ1, . . . , θk) parametrized
by θ, the likelihood function is defined as

L(θ|x) =

n∏
i=1

f(xi|θ1, . . . , θn) (30)

This function encodes the ”likelihood” of observing the samples xi for a particular choice of
parameters θ. Given this function, it seems reasonable to look for the parameters θ1, . . . , θn
which give the highest probability of observing the sample (i.e the distribution which gives the
highest probability of observing the xi is likely to be the distribution of those xi). This idea leads
to the Maximum likelihood estimator summarized by definition ?? below

Definition 11. For each sample point x, let θ̂(x) be a parameter value at which L(θ|x) attains
its maximum as a function of θ, with x held fixed. A maximum likelihood estimator (MLE) of the

parameter θ based on a sample X is θ̂(X).

The MLE is considered a Frequentist estimator as it only relies on the sample itself without
making any prior assumption on the parameters.

The Bayesian approach to statistics is fundamentally different. So far, we assumed that θ was
an unknown but fixed quantity. I.e. A random sample X1, . . . , Xn was drawn from a population
and based on those observations, some knowledge on θ was obtained. In the Bayesian approach,
θ is described by a probability distribution (the prior distribution). We thus assume some level
of uncertainty on θ. The prior is a subjective distribution which is set by the observer.

The idea is that the observer updates his original prior based on the sample that he draws
from the population. The update is done by means of Bayes’ rule,

p(θ|x) ∝ p(x|θ)p(θ) (31)

Just as in the MLE setting, we can then estimate the parameter θ by finding the value which
maximizes the new prior, p(θ|x).

4.5 Exponential family

Many of the probability density functions discussed above are part of a general family of distri-
butions known as the exponential family.

A probability density function, f(x|θ) is said to be in the exponential family if it is of the
form

f(x|θ) = h(x)c(θ) exp(

k∑
i=1

wi(θ)ti(x)) (32)

=
1

Z(θ)
h(x) exp(θTφ(x)) (33)

= h(x) exp(θTφ(x)−A(θ)) (34)

where

Z(θ) =

∫
Xm

h(x) exp(θTφ(x)) dx (35)

A(θ) = logZ(θ) (36)

Z(θ) is called the partition function and A(θ) is called the log partition function. θ are called
the natural parameters or canonical parameters.

7

5 Probabilistic classifiers

When discussing classification, we often either look at classifiers as geometrical objects (i.e separat-
ing planes, maximal margin hyperplanes,..) or as probabilistic objects based on Bayes Theorem.
In the last framework, we consdider two main groups of classifiers

• Generative classifiers

• Discriminative classifiers

The first class defines a model for the joint probability distribution p(x, y) (or equivalently
for the class conditional density p(x|y)) and hence provides a way to generate new samples x.
The second class defines a model for the probability distribution p(y|x) (i.e the class posterior)
and hence only provides a way to discriminate between classes. Below we discuss the two most
popular discriminative models: The Naive Bayes classifier (generative) and the Logistic regression
classifier (discriminative)

5.1 Naive Bayes classifier

The Naive Bayes classifier is a generative classifier (i.e we learn a model for p(x|y) or p(x, y)).
We consider a classification problem in which the feature vectors are D dimensional. Moreover,
each of the D features can take K values. I.e, x ∈ {1, . . . ,K}D. If we assume that the features
are independent within a class c (note that this is usually not the case), we can write the ”class
conditional density” as

p(x|y = C`,θ) =

D∏
j=1

p(xj |y = c,θj`) (37)

In the equation above θj` is the parameter associated to feature j in class C` (see below).

Possible choices for the probability distribution the include

• the Gaussian distribution

p(x|y = C`;θ) =

D∏
j=1

N (xj |µj`, σ2
j,`) (38)

Here µj,` and σ2
j,` are the mean and variance for the jth feature in class C`.

• When the features are encoded through binary variables β = {0, 1}, the multivariate distri-
bution is often used. In this case, we have

p(x|y = C`,θ) =

D∏
j=1

Ber(xj |µj,`) (39)

Again, here µj,` is the probability of getting feature j in class `.

5.1.1 Deriving the parameters through Maximum Likelihood

We want to train a classification algorithm from a set of pairs (xi, ci). The prototypes xi are
represented by D-dimensional feature vectors xi = (xi1, . . . , xiD). From this, if we assume that
the probabilities of observing the features are independent, the probability of observing a given
pair (xi, ci) reads as

p(xi, ci|θ) =

D∏
j=1

p(xij |ci,θj)p(ci|π) (40)

8

Here p(ci|π) encodes the probability of observing the class i and π = (π1, . . . , πN) encode the
probabilities of getting a particular class C1 to CN . Using the δ notation, we can thus write (40)
as

p(xi|yi|θ) =

C∏
c=1

πδ(yi=c)c

D∏
j=1

N∏
c=1

p(xij |θc,j)δ(yi=c) (41)

Taking the product over all pairs and then the log, the log likelihood can read as

log(D|θ) =

C∑
c=1

Nc log(πc) +

D∑
j=1

N∑
c=1

∑
is.t.yi=c

log p(xij |θjc) (42)

Maximizing the log likelihood with respect to the parameters of the model then gives

π̂c =
Nc
N

(43)

as an estimate for the class prior (the probability of being in Class c). This estimate is thus the
ratio between the number of samples in class c and the total number of training samples.

If we assume that all N features x1i, . . . , x1,N are binary and that all the vectors within a class
follow the same distribution, then a good choice for p(xij |θjc) is to take a Bernoulli distribution
with parameter θjc. In this case we can show the MLE for the parameter θjc is given by the ratio
of the number of vectors from class c which have their jth feature equal to 1 over the total number
of points from class c,

θ̂jc = p̂(xij = 1|y = c) =
Njc
Nc

(44)

Once we have computed the parameters of the model, the model can be used to classify new
points by relying again on Bayes (neglecting the normalizing constant), we have

p(y = c|x,D) ∝ p(y = c|D)

D∏
j=1

p(xj |y = c,D) (45)

∝ p(y = c|D)p(x|y = c,D) (46)

and p(y = c|D) can be estimated from the data as p̂(y = c|D) = Nc

C , i.e the number of training
samples from class c over the total number of samples.

5.2 Logistic regression

Logistic regression is perhaps the most popular discriminative classifier. The probabilistic model
is defined as

p(y|x,w) = Ber(y|sigm(wTx)) (47)

where the sigmoid sigm(·) is defined as

sigm(x) =
1

1 + exp(−x)
(48)

We thus have

p(y = 1|x,w) =
exp(wTx)

1 + exp(wTx)
(49)

p(y = 0|x,w) = 1− exp(wTx)

1 + exp(wTx)
(50)

9

The interesting aspect of logistic regression is that the ratio between the probability of each
class (which can be used to do classification) is linear in the parameters of the model. You can
indeed verify that

log(
p(y = 1|x,w)

p(y = 0|x,w)
) = wTx (51)

This model in fact falls in the class of ”genralized” linear models for that precise reason. This
idea easily extends to multiple class by introducing ”log-odd ratio” between the probability of
each class and the last. For K classes, we have K − 1 such ratios (the last probabilitiy is fixed
through

∑
i p(C = i|x) = 1)

log(
P (C = 1|x)

P (C = K|x)
) = wT

1 x (52)

log(
P (C = 1|x)

P (C = K|x)
) = wT

1 x (53)

... (54)

log(
P (C = K − 1|x)

P (C = K|x)
) = wT

K−1x (55)

The posterior class probabilities are then defined as

P (C = k|x) =
exp(wT

k x)

1 +
∑K−1
`=1 exp(wT

` x)
, k = 1, . . . ,K − 1 (56)

P (C = K|x) =
1

1 +
∑K−1
`=1 exp(wT

` x)
(57)

The model (and the associated parameters) can be learned through Maximum likelihood, by
writing the likelihood function for the N observation (noting cn the class of xn),

`(w`, ` = 1, . . . ,K − 1) =

N∑
n=1

log(p(C = cn|x)) (58)

And then minimizing the function through gradient descent.

6 Optimization

Finding the global minimizer of sufficiently complex functions is usually hard because iterative
algorithms will get trapped in ”local minimas”. When solving optimization problems, we will often
be interested in understanding whether the particular point to which our algorithm converges is a
local or a global minimum (resp maximum) of the function. Under some conditions (smoothness
of the function), the general characterization of the local extremas of a function is relatively easy
as shown by the following two propositions

Proposition 1 (First order necessary conditions). If x∗ is a local minimizer and f is continuously
differentiable in an open neighborhood of x∗, then ∇f(x∗) = 0.

Proposition 2 (Second Order Necessary conditions). If x∗ is a local minimizer of f and ∇2f is
continuous in an open neighborhood of x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite.

Given a function f , there also exist sufficient conditions under which one can guarantee that
a point is a minimizer. This idea is summarized by proposition 3 below

Proposition 3 (Second Order Sufficient conditions). Suppose that ∇2f is continuous in an open
neighborhood of x∗ and that ∇f(x∗) = 0 and ∇2f(x∗) is positive definite. Then x∗ is a strict local
minimizer of f .

10

6.1 Convexity

Definition 12 (Convex set). A set of points, C is convex if the line segment between any two
points in the set is included in the set, that is to say for any x1,x2 ∈ C, and any scalar α ∈ R
with 0 ≤ α ≤ 1, we have

αx1 + (1− α)x2 ∈ C (59)

When a set is not convex, it is always possible to define the smallest convex set that contains
C. This idea in particular plays an important role when replacing non convex function (which
therefore cannot be optimized efficiently) by convex approximation whose solution can be found
and studied by iterative algorithms.

Definition 13 (convex hull). Given a set of points S, the convex hull of S is defined as

convS = {α1x1 + . . . , αkxk|xi ∈ S, αi ≥ 0, i = 1, . . . , k, α1 + . . .+ αk = 1} (60)

I.e., convS is the set defined from all possible convex combinations of points from S.

6.2 Constrained problems and Lagrangian

When considering a basic mathematical programming problem of the form

min f0(x)

subject to f`(x) ≤ 0, ` = 1, . . . L.
(61)

We will use K to denote the set of feasible points for the program (61) (i.e. the set of points
x satisfying the constraints in (61)), i.e. K = {x | f`(x) ≤ 0}

We can write the Lagrangian by introducing positive multipliers λ` ∈ R for each of the
constraints f`(x) ≤ 0. As those constraints are negative, the Lagrangian then reads as

L = f0(x)−
L∑
`=1

λ`f`(x) (62)

The following Theorem then gives necessary conditions (on the Lagrangian) for a point x to be a
minimizer from the feasible set, K.

Theorem 4 (Kuhn-Tucker conditions). Assume that f`(x) (` = 1, . . . , L) are all differentiable.
If the function f0(x) attains a local minimum at a point x∗ which belongs the feasible set K,
then there exists a vector of multipliers, λ∗` , ` = 1, . . . , L, such that the following conditions are
satisfied

∂f0(x∗)
∂xj

+

L∑
`=1

λ∗`
∂f`(x

∗)
∂xj

= 0, (j = 1, . . . , J) (63)

f`(x
∗) ≤ 0, (` = 1, . . . , L) (64)

λ∗`f`(x
∗) = 0, (` = 1, . . . , L) (65)

λ∗` ≥ 0, (` = 1, . . . , L) (66)

Proof. We can always replace the inequality constraints in (61), by introducing slack variables y`.
I.e., we always have the equivalence

f`(x) ≤ 0 ⇐⇒ f`(x) + y2` = 0 (67)

11

for some variables y`.

For those slack variables, the Lagrangian reads as

L = f0(x) +

L∑
`=1

λ`(f`(x) + y2`) (68)

Any minimum of the Lagrangian must satisfy the zero gradient condition, so we have

∂L

∂xj
=
∂f0(x∗)
∂xj

+

L∑
`=1

λ`
∂(f`(x

∗) + (y∗`)2)

∂xj
= 0, (` = 1, . . . , L) (69)

∂L

∂y`
= 2λ`y` = 0 (70)

∂L

∂λ`
= f`(x) + y2` = 0 (71)

Condition (70) above is equivalent to the ”complementary slackness” condition (65). To see
this, simply note that λ`y` = 0 implies either λ` = 0 or y` = 0.

In the second case, we have yi = 0 and hence f`(x) + y2` = 0 which implies f`(x) = 0. For the
reverse implication, simply note that λ` 6= 0 implies f` = 0 and hence y2` = −f` = 0 which finally
gives y`λ` = 0

If y` 6= 0 (equivalently, λ` = 0), on the other hand, then (71) implies y`λ` = −f`λ` = 0 and
the equivalence is straightforward.

Condition (71) is equivalent to (63) (i.e the slack variables can be eliminated from the deriva-
tive)

We are thus left with showing that conditions (69) to (71) imply the non negativity of the
multipliers λ`. For a general minimization problem,

min f0(x) (72)

subject to fi(x) ≤ bi, (i = 1, 2, . . . ,m) (73)

if we denote the optimal solution corresponding to a given value of the bounds bi, as x0(b), we
have

∂f0(x0(b))

∂bi
= −λi (74)

But on the other any increase in the bi leads to a larger feasible set and hence the variation in
the value of f0 for such a small increase in bi must always be negative (i.e we can only do better
when we increase the feasible set), following from this, we must have

∂f0(x0(b))

∂bi
≤ 0 (75)

which implies λi ≥ 0

7 Halfspaces and hyperplanes

Given a vector w ∈ RN , one can define a(n) (affine) hyperplane as the set of all points x ∈ R
satisfying the relation wTx+ b = 0.

The vector w encodes the normal to the hyperplane, which also means that for any two points
x1,x2 that lie on the hyperplane, we necessarily have

wTx1 + b = wTx2 + b = 0 (76)

12

(i.e the two points belong to the hyperplane) and hence,

wT (x1 − x2) = 0 (77)

Every hyperplane naturally defines a splitting of the space into two halfspaces. The set of
points which are lying above the plane (i.e formally, the points for which wTx+ b > 0), and the
set of points which are lying under the plane (wTx+ b < 0). Every hyperplane can thus be used
as a natural classifier,

y(x) = wTx+ b (78)

where we put the point x in class C0 if y(x) > 0 and in class C1 if y(x) < 0.

7.1 Distance of a point to a hyperplane

When discussing the robustness of a classifier (and in particular when introducing the notion of
margin), we will need the notion of distance of a point to a hyperplane.

Consider Fig 1 below. We consider the plane in red defined as y(x) = wTx + w0. For any
point x (shown in blue), one can consider the decomposition

x = x⊥ + d
w

‖w‖ (79)

That is we write x as the combination of its projection onto the plane and a contribution
of length d along the normal vector to the plane, w. d thus encodes the distance of x to the
hyperplane. Now if we multiply (79) by wT,

wTx = wTx⊥ +wT d
w

‖w‖ (80)

and add the bias, we get

wTx + b = wTx⊥ + b+wT d
w

‖w‖ (81)

The left handside is simnply y(x). The first term on the right handside is 0 as x⊥ lies along the
plane (hence is orthogonal to w). We are thus left with

y(x) = ‖w‖d (82)

from which follows

d =
y(x)

‖w‖ (83)

So the signed (because d can be both positive and negative here) distance, is given by the ratio
of the prediction y(x) over the norm of the normal vector w. We will use this when discussing
Maximal margin classifiers.

8 Regression and regularization

The simplest regression model, and one of the most widely used, is the linear regression model.
In linear regression we want to learn a plane (w, b) that describes the data as well as possible.
The idea here is that if we can show that such a plane is a good representation of the relation
between y(xn) and xn for the training data we have, then it might give reliable predictions on
new data xn

To do so, for a given set of training points, (xn, yn), we minimize the sum of squared errors
between the predictions y(xn) from the plane and the exact target values , tn,

13

w

x1

x2

x

x?

y(x)

kwk

� b

kwk

Figure 1: Distance of a point to a hyperplane

argmin
w,b

N∑
n=1

|ŷ(xn;w, b)− tn|2 (84)

= argmin
w,b

N∑
n=1

|wTxn + b− tn|2 (85)

= argmin
w,b

N∑
n=1

|
D∑
i=1

xni wi + b− tn|2 (86)

The model remains linear if we replace the original points by a representation in some feature
space, φ(x). In this case, the model reads as

y(xn;w; b) = b+

D∑
j=1

wjφj(x
n) (87)

and, including the bias b in the weight vector w, w̃ = [1,w] and letting φ̃(x) = [1, φ(x)], we
have

argmin
w,b

N∑
n=1

|y(xn; w̃)− tn|2 =

N∑
n=1

∣∣wTφ(xn)− tn
∣∣2 (88)

The solution to problem (88) can be computed in closed form by setting the derivatives to 0
and then solving for w and b. Setting the derivative of (84) (on the generic feature formulation)
to 0, we get

N∑
n=1

(
tn −wTφ(xn)

)
φ(xn)T = 0 (89)

(Verify this using the matrix derivatives). When solving for w, we thus have

N∑
n=1

tnφ(xn)T −wT

(
N∑
n=1

φ(xn)Tφ(xn)

)
= 0 (90)

which gives

w = (ΦTΦ)−1ΦT t (91)

14

Here t is the vector concatenating the targets t = (t1, . . . , tn), and Φ is the matrix whose
columns encode the feature vectors φ(xn), i.e.

Φ =

φ0(x0) φ1(x0) . . . φM (x0)
φ0(x1) φ1(x1) . . . φM (x1)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φ0(xN)

 (92)

The matrix Φ+ = (ΦTΦ)−1ΦT is precisely the Moore Penrose Pseudo inverse which was
introduced in Definition 1.

This solution highlights an important aspect of linear regression: For the solution of prob-
lem (88) to be well defined, we need the Gram matrix ΦTΦ to be invertible.

When this matrix is not invertible, it means that columns or rows, of that matrix are linearly
dependent and hence, that a given subset of the feature vectors φ(xn) can be written from the
knowledge of all the remaining features. The issue with such redundancy in the representation
of the data is that one can define a perfectly valid classifier for the dataset, but for which the
weights can vary arbitrarily and in particular, be arbitrarily high as they can cancel each other.
Indeed, asssume that for all training points, features φ1(xn) can be obtained as the combination
φ2(xn) + 2φ3(xn). Then for any given classifier,

y(x) = b+ w1φ1 + w2φ2 + w3φ3 (93)

adding a term

αwφ1 − w(φ2 + 2φ3) (94)

will not change the regression of the training points, for any w ∈ R, since at all those training
points we have

φ1(xn) = φ2(xn) + 2φ3(xn) (95)

In particular, we could take w arbitrarily large and get a classifier that ”fits” the training data
perfectly well. The issue however is that for new data (or test data), the two classifiers will give
very different results. In practice, we therefore want to avoid such situations and we will add a
penalty on the coefficients (w1, . . . , wN) and bias b.

8.1 Regularizers

There are three popular approaches at regularizing the linear regression problem (88).

• `2 (Ridge regression). Here we simply minimize the sum of squared weights (squared `2
norm),

argmin
w,b

N∑
n=1

∣∣wTφ(xn)− tn
∣∣2 + λ

D∑
i=1

|wi|2 (96)

• `1 (LASSO). Here we minimize the sum of the absolute value of the weights,

argmin
w,b

N∑
n=1

∣∣wTφ(xn)− tn
∣∣2 + λ

D∑
i=1

|wi| (97)

• Finally in Best Subset Selection (which can be throught of as a minimization of the number
of non zero weights), we found for each K, the best size-K subset of regression coefficients
w1, . . . , wN .

15

In all of those approaches, the optimal choice of λ or for best subset selection, the optimal
size of the subset of regression coefficients, is fixed through cross validation, by computing the
regression coefficients associated to a particular value of λ for a subset S1 of the whole dataset,
then testing the model on the remaining S \ S1 data. And then selecting the λ that leads to
the smallest generalization error. The two formulations (96) and (97) both admit constrained
variations,

argmin
w,b

N∑
n=1

∣∣wTφ(xn)− tn
∣∣2 (98)

subject to

D∑
i=1

|wi|2 ≤ t (99)

and

argmin
w,b

N∑
n=1

∣∣wTφ(xn)− tn
∣∣2 (100)

subject to

D∑
i=1

|wi| ≤ t (101)

respectively.

Finally, note that other regularization terms are possible. In particular, any `p norm, p ≥ 1

‖x‖p =

(
D∑
i=1

wpi

)1/p

(102)

can be used as a regularizer.

In the case of the ridge regression formulation (96), it remains possible to derive a closed form
solution as follows. We consider the unconstrained formulation, take the derivatives with respect
to (w, b) and set those derivatives to 0, we get

wridge = (XTX + λI)−1XT t (103)

or in the case of feature vectors φ(x),

wridge = (ΦTΦ + λI)−1ΦT t (104)

Hence you see that we have replaced the matrix (ΦTΦ) by a better conditioned version of this
matrix as it is now combined to the identity which is invertible.

9 Kernels

Let β0 ∈ R to denote the bias and β1 ∈ RD to denote the vector of weights. In practice, we often

have to deal with prototypes, {xµ}Nµ=1 which are not linearly separable in their original space.
One approach then consists in introducing features and to ”map” the original prototypes xµ into
a space (the feature space) in which those prototypes become linearly separable. We use φ to
denote the underlying transformation so that for a given datapoint x, φ(x) denotes the feature
vector of x.

Example 1. Consider the dataset shown in Fig. 2 (left). In the original R2 space, the data
given by pairs (x1, x2) is clearly not linearly separable. However, it is possible to introduce a
transformation φ : x 7→ φ(x) defined as φ(x) = φ(x1, x2) = (x1, x2, x

2
1 + x22).

Here, introducing an additional dimension, and setting this dimension to be equal to the radius
of the points in the original space, results in the purple points being placed above the red points,
thus leaving some space for a separating plane.

16

Figure 2: From non linearly separable data to linearly separable data via higher dimensional
feature space

Relying on feature vectors to learn classifiers is at the core of machine learning. However, such
an approach often requires to map the data to a much higher dimensional space (i.e higher than
the number of prototypes xµ). In this case, it is more interesting to avoid computing the feature
vectors explicitely and to rely instead on a measure of similarity between the points in the feature
space. After all, the important information here is really how the points compare to each other
in the feature space. This information is encoded through kernels

Mathematically, a kernel is nothing else than a function that measure similarity between
points. This is summarized by the definition below

Definition 14 (Kernel). We define a kernel to be the real valued function of two arguments x
and x′ from a space X . Typically this function is taken to be symmetric k(x,x′) = k(x′,x) and
non negative, k(x,x′) ≥ 0. Those two properties enable us to interpret the kernel k(x,x′) as a
measure of similarity between points.

Examples of popular kernels are listed below

• The Gaussian kernel

k(x,x′) = exp(−1

2
(x− x′)Σ−1(x− x′))

• When the covariance matrix Σ is isotropic/spherical, we get the isotropic kernel

k(x,x′) = exp(−‖x− x
′‖2

2σ2
)

• The cosine similarity:

k(x,x′) =
xTx′

‖x‖2‖x′‖2
• The (non stationnary) polynonial kernel:

k(x,x′) = (γxTx′ + r)M

where r > 0. This kernel corresponds to a feature vector φ(x) that contains all the mono-
mials up to degree M .

The isotropic kernel is an example of Radial basis function (a function whose distance decreases
or increases monotonically with respect to a central point). Those functions are multivariate (i.e
they are defined on x ∈ RD) but they reduce to a scalar function of the Euclidean norm ‖x‖2 of
their argument x, i.e.,

F (x) = f(‖x‖2) = φ(r), x ∈ RD (105)

Examples of radial basis functions include

17

• The Gaussian RBF: F (‖x− x′‖) = exp(−α2‖x− x′‖2)

• The Multiquadratic RBF: F (‖x− x′‖) =
√

1 + α2‖x− x′‖2

As soon as one has access to the feature vector φ(x) (for example when this feature is finite
dimensional), one can build a valid kernel by defining k(x,x′) as the inner product of the feature
vectors of x and x′, i.e.,

k(x,x′) = φ(x)Tφ(x′) (106)

9.1 From linear regression to kernel regression

When the dataset is not linearly separable in the original space, we turn to a formulation on the
feature space and try to find the plane defined by (β0,β1) that minimizes J(β), i.e.,

min J(β) =
1

2

N∑
n=1

{
βT1 φ(x) + β0 − tn

}2

+
λ

2
‖β‖2 (107)

Here the separating plane is defined through the vector of parameters β = (β0,β1), β0 ∈ R,
β1 ∈ RD. The solution for β can be obtained by computing the derivative of J(β) with respect

to β and settting it to zero. For pairs {(xn, tn)}Nn=1, we have

∂J(β)

∂β
= 0⇒ β = − 1

λ

N∑
n=1

{
βT φ̃(xn)− tn

}
φ̃(xn) (108)

Now introducing the notation an for the quantities

an = − 1

λ

{
βT φ̃(x)− tn

}
(109)

Then the solution for β can read as

β =

N∑
n=1

anφ(xn) = ΦTa (110)

Where Φ is the matrix whose ith row is given by φT (xi). Now substituting this expression
into (108), we get

J(a) =
1

2
aTΦΦTΦΦTa− aΦΦT t+

1

2
tT t+

λ

2
aTΦΦTa (111)

From the discussion above, you see that the product ΦΦT is actually encoding all inner
products 〈φ(xn),φ(xm)〉 and we can thus replace the product ΦΦT with the Kernel K(x,x′).
Doing this yields an objective, or energy function that only depends on the kernel K(x,x′),

J(a) =
1

2
aTKKa− aTKt+

1

2
tT t+

λ

2
aTKa (112)

We can then solve for a or simply substitute the expression (110) we found for β in (109), to
find

a = (K + λI)−1t (113)

Once we have this expression (note that so far everything can be expressed with the Kernel),
the classifier simply reads as

y(x) = βTφ(x) = aTΦφ(x) =

N∑
n=1

anK(xn,x) (114)

18

10 Support Vector Machines (SVM)

Support vector machine, which are also known as sparse kernel machines, or Maximal margin
classifiers, extend the notion of separating hyperplane to find a separating plane that reduces as
much as possible the ”risk” of misclassifying new points. To achieve this, the separating plane is
defined as the plane maximizing the distance to its closest point(s).

Using the discussion from section 7.1, we can then write the derivation of such maximal margin
hyperplane as

argmax
w,b

{
1

‖w‖ min
n

[
tn(wT(φ(xn) + b))

]}
(115)

That is we look for the w and b (which define the plane) such that the distance of the closest
point (minimization on xn) to the plane is maximized.

Formulation (115) is invariant under any rescaling of the pair (w,b). I.e as w and/or b both
appear at the numerator and at the denominator, replacing those quantities by (αw, αb) does
not affect the solution. In fact any such pair, for any α will be a valid solution.

In order to simplify the formulation, we can therefore fix the value of α and decide to take
this value equal to the value satisfying

tn(wTφ(xn) + b) = 1 (116)

for the closest point xn. By assumption, any other point, must satisfy tn(wTφ(xn) +b) ≥ 1, and
the problem reads as

argmin
w,b

1

2
‖w‖2

subject to tn(wTφ(xn) + b) ≥ 1

(117)

Note that we have used argmax
x
‖x‖−1 = argmin

x
‖x‖. Problem (117) is a quadratic program

that is convex, hence, has a single basin of attraction and can be solved efficiently.

To solve this problem, we write is as an unconstrained formulation (Lagrangian) by introducing
multipliers, λi for each constraints (see section 6.2)

L(w,b, λ) =
1

2
‖w‖2 −

N∑
n=1

λn
{
tn(wTφ(xn) + b)− 1

}
(118)

To find the solutions for w and b, we compute the derivatives of L with respect to those
variables and set the derivatives to 0. From this, we get

w =

N∑
n=1

λntnφ(xn) (119)

0 =

N∑
n=1

λntn (120)

Now recall that the general form of the classifier we are after is given by

y(x) = wTφ(x) + b (121)

If we substitute the expression for w that we derived from the zero derivatives in the expression

19

of the classifier, we get

y(x) =

N∑
n=1

λntn〈φ(xn),φ(x)〉+ b

=

N∑
n=1

λntnk(x,xn) + b

(122)

Now besides the maximization of the margins, the other key idea of SVM is the fact that we
don’t need to keep track of all the training samples in (122). Indeed from Theorem 4, we know
that the solution (w,b) of problem (117) has to satisfy the conditions

λn ≥ 0 (123)

tny(xn)− 1 ≥ 0 (124)

λn(tny(xn)− 1) = 0 (125)

From the last condition in particular, we can see that for every training sample, n = 1, . . . , N ,
either we have λn = 0 or we have tny(x) − 1 = 0. The second case corresponds to points that
are located the closest to the maximal margin hyperplane as the distance to each points to the
hyperplane is always lower bounded by

tny(xn)

‖w‖ ≥ 1

‖w‖ (126)

In other words, for every training point that appears in (122):

• Either that point does not contribute to the expression (122) of the classifier (as λn = 0)

• Or it is lying on the margins.

Using this idea to simplify (122), if we introduce the notation S to denote the set of ”support
vectors”, that is the points that are lying on the margins, or located the closest to the plane, the
expression of the classifier reduces to

y(x) =
∑
n∈X

λntnk(x,xn) + b (127)

Furthermore, we can use condition (125) for the support vectors, (i.e. those for which we have
tn(y(xn)− 1) = 0) to write b. indeed note that substituting (127) into condition (125) gives

tn

(∑
n∈S

λntnk(x,xn) + b

)
= 1, for every xn ∈ S (128)

To obtain a robust estimate of b, we can then just sum all those equation and divide by NS . This
gives

b =
1

NS

∑
n∈S

(
tn −

∑
n′∈S

λn′tn′k(x′,xn)

)
(129)

11 Neural Networks

The general formulation of a (two hidden layers) neural network is as follows,

yk = yk(x,w) = σ(2)

 M∑
j=1

w
(2)
kj σ

(1)

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

 (130)

20

x1

x2

x3

x4

y(x,w)

Hidden
layer

Input
layer

Output
layer

Figure 3: Graphical representation of a one layer neural network. The arrows represent multi-
plication by the weights wij . The hidden units (shown in blue) represent the application of the
activation function.

When training neural networks, we usually don’t take all the training samples into account but
rather rely on a small subset of those training samples at each gradient iteration. These subsets
are known as minibatches. There are three main approaches at training a network

• Batch gradient descent. Here all the training samples are taken into account and the weight
are updated only after all the error has been evaluated at all the training samples (Batch
gradient descent is just the regular gradient descent)

• Stochastic gradient descent (SGD). Here, the algorithm computes the error for a given
training sample and update the weights immediately after (i.e the weights are updated for
each training sample)

• Finally, the tradeoff between batch gradient descent and SGD, MiniBatch gradient descent
updates the weight after evaluating the error/loss on a subset of the training samples.

Among the possible regularization approaches for neural networks, the most popular are the
following

• Activity regularization. For a given network, we call activations, the outputs of the acti-
vation functions, i.e σ(`)(·). Placing a regularizer on the activation will result in training
a network in which only a fraction of the neurons fire at the same time (at least for data
similar to the training data).

• Weight regularization. Here we add a penalty (e.g. `2 or `1 norm) on the weights.

• Early stopping. When training neural networks, one often observe a decrease in both the
training and validation error for the first iterations. Then, after a sufficient number of
gradient iterations, the validation error starts increasing [2]. One way to avoid overfitting
is then to get the values of the parameters at each iteration and return the values of the
parameters that give the lowest validation error (we stop the iterations when no improvement
on the validation error has been obtained for some iterations)

• Dropout, which shares some similarities with activity regularizationin fact it can be consid-
ered as some sort of subset selection alternative to the `1 or `2 penalties used in activity
regularization, can be considered as optimizing over a family of ”sparse” networks. When
training a network with dropout, we select some random subset of the neurons and only
update the weights associated to those neurons. Mathematically, when performing SGD,
we thus compute the forward pass (i.e the output of the network) by considering a sparse

21

version of the original network [3]. We choose a probability p. Recall that for a traditional
neural network, the activity of each unit can be defined as

z
(`+1)
i = 〈w(`+1)

i ,y〉+ b
(`+1)
i (131)

y
(`+1)
i = σ(z`+1

i) (132)

With dropout propagation through the network now reads as

r
(`)
j ∼ Bernoulli(p)1 (133)

ỹ(`) = r(`) � y(`) (134)

z
(`+1)
i = w

(`+1)
i ỹ(`) + b

(`+1)
i (135)

y
(`+1)
i = f(z

(`+1)
i) (136)

So that we select only some of the activations yj and only update the weights associated to
those activations.

• Weight Sharing. The idea of weight sharing is especially meaningful in convolutional neural
networks (CNN) where filters are applied to an image to extract information from this
image. As the name indicates, weights sharing requires all the neurons within a particular
subgroup to have identical weights. Weights sharing is implicitely present in convolutional
neural. In those network, each neuron can be thought as computing a local average across
the neighborhood of a pixel. The point of such averages is to extract features from a part of
the image. Usually, when using convolutional neural networks, we are interested in detecting
a particular object in the input images. Hence the features we are looking for should be the
same regardless of the part of the image on which the filter is applied. AS a consequence,
the weights are constants across each layers. Equality of the weights can be enforced in
a hard (exact equality such as in CNNs) or in a soft way. Soft weight sharing is done by
assuming a Gaussian distribution of the weights within a given group of neurons.

In the simplest framework, we assume that all the weights wi in the group G are all relatively
close to some mean value µ (with variance σ2) and we for example assume the distribution
of those weights to be Gaussian

p(wi) = N (wi|µ, σ2) (137)

We can make this model slightly more general by assuming that the weights have a high
probability to take a few distinct values. In this case, we assume for example that the
distribution of those weights is given by a mixture of Gaussian, i.e.,

p(wi) =

M∑
j=1

πjN (wi|µj , σ2
j) (138)

We then use this distribution as a regularization in the objective used to train the network.
I.e, just as we did for the MAP and MLE estimators, we want the training step to select
weights that have a high probability in the model (138). This corresponds to maximiz-
ing (138) over the weights, or (as we did for the MAP and MLE) to minimizing the negative
log likelihood

Ω(w) = − log(

M∑
j=1

N (w|µj , σ2
j)) (139)

When there are several (NG) weights in the group G, we simply sum over the contribution
of each weight,

Ω(w) = −
NG∑
i=1

log

 M∑
j=1

πjN (wi|µj , σ2
j)

 (140)

The loss function that is minimized when training the network is then given by

Ẽ(w) = E(w) + λΩ(w) (141)

22

11.1 Backpropagation

Consider the two hidden layers NN of (130). The extension of this simpler model to L layers can
read as

yk = yk(x,w) = σ(L)

 M∑
j=1

w
(L)
kj σ

(L−1)
(
. . . σ(1)

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
. . .

)
+ w

(L)
k0

 (142)

In order to train such a network, we minimize the loss

N∑
n=1

K∑
k=1

(yk(xn)− tnk)2 (143)

if we put ourselves in a stochastic gradient descent framework, where we only consider a single
sample at each iteration, we can drop the sum over n in (143) and consider the minimization

L =

K∑
k=1

(yk(xn)− tnk)2 (144)

In order to apply one SGD iteration on this objective, and to update the weights

w`ij ← w`ij − η
∂L

∂w`ij
(145)

we need to compute the expression of the derivatives ∂L
∂w`

ij

. To do so, we will rely extensively

on the chain rule.

Computing the derivative with the outer weights (the weights that are the closes to the output
of the network) is easy. But computing the derivatives with respect to the most inner weights,
i.e. w1

ij , can be quite involved.

Backpropagation is an efficient way to compute the gradient of neural networks. First note
that

∂L

∂yk
= 2(yk − tk) (146)

We then want to compute all derivatives of the form

∂L

∂w`kj
(147)

For this, we use the chain rule a first time, splitting (147) into

∂L

∂w`kj
=

∂L

∂a`k

∂a`kj
∂w`kj

(148)

that is we start from the weight we want to compute and we go up one step towards the output
of the network by considering the quantitites

a`k =

M∑
j=1

w`k,jz
`−1
j (149)

23

where z`−1j = σ`−1(. . .).

Note that the second factor in (148) is simply z`−1j = σ`−1(. . .) which is computed when we
pass the data through the network. To get the first factor, we apply the chain rule again, going
one more level towards the output of the network, yk. We have

∂L

∂a`k
=
∑
j

∂L

∂a`+1
j

∂a`+1
j

∂a`k
(150)

This last equation is the equation that really encodes backpropagation. To see this, first note
that from (142), we have

a`+1
j =

∑
m

w`jmzm (151)

=
∑
m

w`jmσ
`(am) (152)

and we can thus write

∂a`+1
j

∂a`k
= (σ`)′w`jm (153)

Putting this back into (150), we get

∂L

∂a`k
=
∑
j

∂L

∂a`+1
j

(σ`)′w`jm (154)

Now let δ`k = ∂L
∂a`k

. From (154), we can write

δ`k =
∑
j

δ`+1
j (σ`)′w`jm (155)

From (155), you see that the δ`+1 can be ”backpropagated” through the network by multipli-
cation with the weights, to obtain the δ` (we move from the output aL to the most inner part
of the network, a1, hence the term ”backpropagation”). Once we have computed all the δ`, the

derivatives are simply given by using (148) and noting that
∂a`k
∂w`

kj

= z`−1j (Eq. (149)).

The ”backpropagation” algorithm can thus read as follows

• First send the training data through the network and compute all the z`j(. . .) which are the
outputs of every neuron.

• Then compute all the intermediate derivatives
[
σ`(a`−1)

]′
a the activations a`−1 given by

your training point.

• Once you have all those values, start backpropagating the δ with

δL =
∂L

∂aLk
=
∂(yk − tk)2

∂yk

∂yk
∂aLk

(156)

= 2(yk − tk)
[
σL(aLk)

]′
(157)

and then

δ`k =
∑
j

δ`+1
j (σ`)′w`jm (158)

• Finally, once you have all the δ`k, compute the derivatives as

∂L

∂w`kj
=

∂L

∂a`k
z`j (159)

24

11.2 Clustering Algorithms

Discuss empty clusters

When the total number of clusters is known to be K and one of the clusters ends up being
empty. In this case we restart the initialization by taking the centroid to be for example the point
that is located the farthest away from all the centroids. Proceeding like this will eliminate the
points that contributes the most to error. Another approach is restart the algorithm by keeping
the non zero clusters and resampling a centroid from the cluster that has the largest intra cluster
SSE. This will reduce the general error.

The process can be repeated when there are multiple empty clusters.

References

[1] George Casella and Roger L Berger. Statistical inference, volume 2. Duxbury Pacific Grove,
CA, 2002.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[3] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

25

	Notations
	Linear algebra
	Differential Calculus
	Statistics and probability
	Probabilistic classifiers
	Optimization
	Halfspaces and hyperplanes
	Regression and regularization
	Kernels
	Support Vector Machines (SVM)
	Neural Networks

