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Why study ML? One more cover from this week



A few reminders

I Supervised vs Unsupervised

I Supervised: you are given patterns of the form {xµ, yµ} (both
points and labels). The algorithm has to learn the model
f (xµ) = yµ.

I Unsupervised: you are given data of the form xµ, the
algorithm is asked to extract some meaningful structure (such
as clusters) from the data.



Previous lecture

I Data distribution in nature are often highly complex

I Learning = understand the distribution from a few samples

I Two possible statistical approaches :
I Bayesian : maximizes the posterior and relies on the definition

of a prior

I Frequentist : no prior but estimation through repeated samples
(sampling distribution)



This week

I Bayesian vs Frequentist (quick review)

I Linear Regression

I Linear classification

I Regularization

I Python !



Linear regression

I Linear models assumes that the regression function is linear in
the inputs X1, . . . ,Xm

E (Y |X ) = f (X ) = β0 +

p∑
j=1

Xjβj

I Note that the model is linear in the inputs Xk but can be used
for polynomial representation by introducing additional
variables X2 = X 2

1 , X3 = X 3
1 , ...

I Or even other non linear transformations such as log, square
root,...



Linear regression: Fitting

I Given a set of training data, (X1, y1), (X2, y2), . . . , (Xn, yn),
the most popular approach (or choice of loss) is to minimize
the residual sum of squares (RSS)

RSS(β) =
N∑
i=1

(yi − f (Xi ))

=
N∑
i=1

(yi − β0 −
p∑

j=1

Xi ,jβj)
2



Linear regression: Fitting

I To fit the model β to the data (Xi , yi ), we look for the
parameters that minimizes the RSS

RSS(β) = (y − Xβ)T (y − Xβ)

I Here X is the N by p − 1 matrix whose i th row is defined as
[1,X i ]

I To find this minimum, we set the first order derivative to zero
and check second order derivative to make sure we have a
minimum

∂RSS

∂β
= −2XT (y − Xβ)

∂2RSS

∂β∂βT
= 2XTX



Linear regression: Fitting

∂RSS

∂β
= −2XT (y − Xβ)

∂2RSS

∂β∂βT
= 2XTX

I When all eigenvalues of 2XTX are positive, the problem has
a minimum and we can write

−2XT (y − Xβ) = 0 ⇒ β = (XTX )−1XTy



Linear regression: Fitting

From Hastie, Tibshirani, Friedman, The elements of statistical
learning.



Intuition

I The fitted values at the training inputs are then given by

ŷ = X β̂ = X (XTX )−1XTy

I The idea behind the linear (RSS) regression model is that we
want the residuals to be orthogonal to the subspace spanned
by the Xi

I If most of the variability of the input data occurs in a given
direction, we want to minimize the error along that direction

I So we ask XT (y − Xβ) = 0



Gauss Markov and the Bias variance tradeoff (I)

I Assume we want to estimate any linear function of β (can be
β itself)

I The RSS/LS estimate for aTβ is

θ̂ = aT β̂ = aT (XTX )−1XTy

I If the linear model is correct (Ey = Xβ)

E
{
aT β̂

}
= E

{
aT (XTX )−1XTy

}
= aT (XTX )−1XTXβ

= aTβ

I We say that the estimator is unbiased



Gauss Markov and the Bias variance tradeoff (II)

I Gauss-Markov: for any other linear (in y) estimator θ̃ = cTy
that is unbiased, we necessarily have

Var(θ̂) = Var(aT β̂) ≤ Var(θ̃) = Var(cTy)

I Is the minimal variance always a good idea ?

I For a given estimator, the mean square error (MSE) is defined
as

MSE(θ̃) = E
{

(θ̃ − θ)2
}

= Var(θ̃) +
(
E
{
θ̃ − θ

})2
I Least squares estimator has the smallest variance among all

estimators with no bias but there might exists estimators with
bias that have much smaller MSE



Gauss Markov and the Bias variance tradeoff (II)

I For the particular choice θ̃ = f (x0) = xT0 β (x0 in the test set),
we get a measure of the error on future predictions

E (β) = Bias2(f̂ (x0)) + Var(f̂ (x0))

I LS estimator has smallest variance among all estimators with
no bias

I But this variance (and thus the prediction error) can be large..

I This is the case when variables are correlated. Then a large β`
in one variable can be canceled by another large negative βk
multiplying a correlated variable. Exact 0 bias might introduce
large variance.





Two issues

I Two reasons why linear regression is often not satisfying
I Prediction accuracy. Linear regression models have low bias

(good on average) but large variance

I Interpretation. When doing prediction it would be good to
target a smaller subset of the data which contains the
meaningful information about future values

I Two possible approaches
I Subset selection

I Shrinkage methods



Can we do better: Subset selection

I Consider data of dimension d , {(Xµ, yµ)}µ with X ∈ Rd

I Best subset selection: for each k ∈ {1, 2, . . . , p}, select the
subset S of size k which gives the smallest residual SOS for βS

N∑
i=1

(yi − β0 −
∑
j∈S

Xi ,jβj)

I Main problem with subset selection : hard in large dimension
(requires enumerating all subsets)

β̂ridge = argmin
β β

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2

subject to ‖β‖`0 ≤ k

I One efficient algorithm for p ≤ 40: Leaps and Bound
procedure



Can we do better: Subset selection (II)

I Can we find a more tractable alternative to the best subset ?

I Start with the constant model β0, then add to the model the
predictor βk that most improves the fit.

I This (greedy) idea is known as Forward Stepwise selection

I Usually improves over best subset selection on at least two
factors

I Computational. Clearly for large p finding the best subset is
intractable. Computing the forward stepwise sequence is
feasible.

I Statistical: exactly finding the best subset will be biased by the
training set and is likely to lead high variance, whether the
forward stepwise approach which is more constrained will have
lower variance



Can we do better: Subset selection (II)

I The method comes in two flavors
I Forward Stepwise selection (start from the intercept and

gradually add more predictors)
I Backward Stepwise selection (start from the full set of

predictors and gradually remove the coefficient which has the
least impact on the fit = coefficient with the smallest Z score)

(Z-Score) Zj =
β̂j

σ̂
√
vj

where vj is the j th diagonal element of (XTX )−1 and σ̂2 is the
empirical variance of the yi

σ̂2 =
1

N − p − 1

N∑
i=1

(yi − ŷi )
2

Here ŷi are the predictions.



Can we do better: Shrinkage methods

I Introducing a small bias, might lead to a decrease in the
Variance and by extension to the prediction error

I How : Penalize large values of β

I Several approaches:
I Ridge regression

I LASSO



Ridge regression

I Ridge regression imposes a SOS penalty on the size of the
regression coefficients

β̂ridge = argmin
β β


N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2j


An alternative reformulation is

β̂ridge = argmin
β β

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2

subject to

p∑
j=1

β2j ≤ t

I This approach is known as weight decay in Neural networks



from A Jain, A Complete Tutorial on Ridge and Lasso Regression
in Python



from A Jain, A Complete Tutorial on Ridge and Lasso Regression
in Python



Basis Pursuit/LASSO

I The Lasso estimate is defined as

β̂lasso = argmin
β β


N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj |


An alternative reformulation is

β̂lasso = argmin
x β

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2

subject to

p∑
j=1

|βj | ≤ t



from A Jain, A Complete Tutorial on Ridge and Lasso Regression
in Python



LASSO vs Ridge

I Because of the nature of the constraint, the LASSO does
some sort of subset selection

I When t is chosen sufficiently small, some of the coefficient
that were small in Ridge regression will be set exactly to zero
by the Lasso formulation.



LASSO vs Ridge (H, T, F)



LASSO vs Ridge (H, T, F)



Going back to frequentist vs Bayesian

I Assume that we measure labels which can be expressed as a
linear function of the data up to some gaussian noise

yj = f (Xij) + σj , σi ∼ N (0, σ2)

I In particular, we now know that yj has a gaussian distribution
with mean f (Xij) and variance σ2

p(Y |X , β) ∝
∏
j

exp

(
−
|yj − f (Xj)|2

2σ2

)
(1)

I taking the log, we get the log-likelihood

− log p(Y |X , β) =
N∑
j=1

|yj − f (Xj)|2

2σ2



Going back to frequentist vs Bayesian

I This (i.e RSS) approach corresponds to a uniform prior on the
parameters.

I Now we want to add a prior.

I Let us assume for example that the weights should follow
independent Gaussian distributions

β ∼ N (0,
1

λ
I )

P(β) =

(
λ

2π

)n/2

exp

(
−λ

2
βTβ

)
(2)



Going back to frequentist vs Bayesian

I If we add this to the MLE framework, and take the log, we
get the (Bayesian) MAP estimator

β̂MAP,gaussian = argmin
β

N∑
j=1

(yj − f (Xj))2 +
λ

2
βTβ

I Does that remind you something?

I The ridge regression estimate is the Bayesian estimator with
Gaussian prior,

β̂MAP,gaussian = β̂ridge



Going back to frequentist vs Bayesian

I Instead of a Gaussian prior, assume that the weights follow
independent Laplace distributions

β ∼ Laplace(0, λI )

P(β) = 2λ exp(−λ|β|)

I let us substitute this in the expression for the posterior
p(y |X , β)p(β), and take the log

β̂MAP,Laplace = argmin
β

N∑
j=1

(yj − f (Xj))2 +
λ

2

d∑
i=1

|βi |

I The LASSO estimator is equivalent to do Bayesian inference
with a Laplace prior, β̂MAP,Laplace = β̂LASSO



Going back to frequentist vs Bayesian



Many other choices of priors/regularizers are possible

I We can generalize the LASSO and Ridge regression models to
other ”log prior densities”

β̂ = argmin
β


N∑
i=1

(yi − β0 −
p∑

j=1

Xijβj)
2 + λ

p∑
j=1

|βj |p


From Hastie, Tibshirani, Friedman


