Introduction to Machine Learning.
CSCI-UA 9473, Lecture 3.

Augustin Cosse

Ecole Normale Supérieure, DMA & NYU
Fondation Sciences Mathématiques de Paris.

Q Enyu
PSL*x PN

x*

2018



Why study ML? One more cover from this week

The incoming president of the British Science Association has warned artificial intelligence is a bigger
threat to national security than terrorism or climate change.
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Fears that the rise of automation and Al, known as Fourth Industrial Revolution, will
endanger jobs is also warranted, he said. His concerns are mirrored by a November

2017 report by the management consulting firm McKinsey, which estimated 50 percent
of current work could be automated as soon as 2030.
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A few reminders

» Supervised vs Unsupervised

» Supervised: you are given patterns of the form {x,,y,} (both
points and labels). The algorithm has to learn the model

f(xu) = Y-

» Unsupervised: you are given data of the form x,,, the
algorithm is asked to extract some meaningful structure (such
as clusters) from the data.



Previous lecture

» Data distribution in nature are often highly complex
» Learning = understand the distribution from a few samples

» Two possible statistical approaches :
» Bayesian : maximizes the posterior and relies on the definition
of a prior

» Frequentist : no prior but estimation through repeated samples
(sampling distribution)



This week

v

Bayesian vs Frequentist (quick review)

v

Linear Regression

Linear classification

v

v

Regularization

v

Python !



Linear

regression

Linear models assumes that the regression function is linear in
the inputs Xi, ..., Xm

E(Y[X) = f(X)=fo+ ) _ XiB

Jj=1

Note that the model is linear in the inputs X) but can be used
for polynomial representation by introducing additional
variables Xo = X12, X3 = X13,

Or even other non linear transformations such as log, square
root, ...



Linear regression: Fitting

» Given a set of training data, (X1,y1), (X2,¥2), .-, (Xn, ¥n),
the most popular approach (or choice of loss) is to minimize
the residual sum of squares (RSS)

RSS(B) = ) _(vi — f(Xi))
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Linear regression: Fitting

» To fit the model /3 to the data (Xj, y;), we look for the
parameters that minimizes the RSS

RSS(8) = (y — XB3)"(y — XB)

» Here X is the N by p — 1 matrix whose i" row is defined as
[17 Xi]

» To find this minimum, we set the first order derivative to zero
and check second order derivative to make sure we have a

minimum
ORSS
T~ oxT(y— X
a5 (y — Xp)
2
ORSS _ oxTx
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Linear regression: Fitting

ORSS
5 = —2XT(y — Xp)
9°RSS -

» When all eigenvalues of 2X T X are positive, the problem has
a minimum and we can write

—2XT(y—XB)=0 = g=(X"X)"'XTy



Linear regression: Fitting

From Hastie, Tibshirani, Friedman, The elements of statistical
learning.

X1

FIGURE 3.1. Linear least squares fitting with X € R%2. We seek the linear
function of X that minimizes the sum of squared residuals from Y .



Intuition

v

The fitted values at the training inputs are then given by

P=XG=XX"X)"1xTy

v

The idea behind the linear (RSS) regression model is that we
want the residuals to be orthogonal to the subspace spanned
by the X;

v

If most of the variability of the input data occurs in a given
direction, we want to minimize the error along that direction

v

So we ask XT(y — X3) =0



Gauss Markov and the Bias variance tradeoff (1)

» Assume we want to estimate any linear function of 3 (can be
B itself)

» The RSS/LS estimate for a’ 3 is
0=a"f=a"(X"X)1xTy
» If the linear model is correct (Ey = XJ3)
E {aTé} —E {aT(xTX)*ley}
=a (XTX)'XTXp
—a’B

» We say that the estimator is unbiased



Gauss Markov and the Bias variance tradeoff (I1)

» Gauss-Markov: for any other linear (in y) estimator § = ¢’y
that is unbiased, we necessarily have

Var(0) = Var(a” ) < Var(0) = Var(c" y)
» Is the minimal variance always a good idea 7

» For a given estimator, the mean square error (MSE) is defined
as

MSE(d) = E {(9" - 9)2}
= Var(f) + (E {5 - 9})2

> Least squares estimator has the smallest variance among all
estimators with no bias but there might exists estimators with
bias that have much smaller MSE



Gauss Markov and the Bias variance tradeoff (I1)

» For the particular choice § = f(x) = x{ 8 (xo in the test set),
we get a measure of the error on future predictions

E(B) = Bias?(#(xp)) + Var(f(x))

» LS estimator has smallest variance among all estimators with
no bias

» But this variance (and thus the prediction error) can be large..

» This is the case when variables are correlated. Then a large 3y
in one variable can be canceled by another large negative Gy
multiplying a correlated variable. Exact 0 bias might introduce
large variance.
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Two issues

» Two reasons why linear regression is often not satisfying

» Prediction accuracy. Linear regression models have low bias
(good on average) but large variance

» Interpretation. When doing prediction it would be good to
target a smaller subset of the data which contains the
meaningful information about future values

» Two possible approaches
» Subset selection

» Shrinkage methods



Can we do better: Subset selection
> Consider data of dimension d, {(Xu,yu)}, with X € RY

» Best subset selection: for each k € {1,2,..., p}, select the
subset S of size k which gives the smallest residual SOS for s

N
> (vi—Bo— > XijB)
i—1

jes

> Main problem with subset selection : hard in large dimension
(requires enumerating all subsets)

N P
3198 = argmin Y “(yi — Bo— Y _ xiif%j)?
B pim1 j=1
subject to || B¢, < k

» One efficient algorithm for p < 40: Leaps and Bound
procedure



Can we do better: Subset selection (1)

» Can we find a more tractable alternative to the best subset ?

» Start with the constant model Sy, then add to the model the
predictor B that most improves the fit.

» This (greedy) idea is known as Forward Stepwise selection

» Usually improves over best subset selection on at least two
factors

» Computational. Clearly for large p finding the best subset is
intractable. Computing the forward stepwise sequence is
feasible.

» Statistical: exactly finding the best subset will be biased by the
training set and is likely to lead high variance, whether the
forward stepwise approach which is more constrained will have
lower variance



Can we do better: Subset selection (1)

» The

>

method comes in two flavors

Forward Stepwise selection (start from the intercept and
gradually add more predictors)

Backward Stepwise selection (start from the full set of
predictors and gradually remove the coefficient which has the
least impact on the fit = coefficient with the smallest Z score)

bi

(Z-Score) Z; =
vj

~

where v; is the j™ diagonal element of (X" X)~! and 62 is the
empirical variance of the y;

1 N
~2 A Y
e T ;Zl(yl i)

Here y; are the predictions.



Can we do better: Shrinkage methods

» Introducing a small bias, might lead to a decrease in the
Variance and by extension to the prediction error

» How : Penalize large values of

» Several approaches:
» Ridge regression

» LASSO



Ridge regression
» Ridge regression imposes a SOS penalty on the size of the
regression coefficients

N

p P
Brldge _ arggﬁn Z(yi — Bo — injﬁj)2 + )\Zﬁjz
j=t =1

8 | i=1
An alternative reformulation is

andge = argm'n Z(}// Bo — ZXU/BJ

5!1 Jj=1

subject to Z,sz <t
j=1

» This approach is known as weight decay in Neural networks



from A Jain, A Complete Tutorial on Ridge and Lasso Regression
in Python

Plot for power: 1 Plot for power: 3 Plot for power: 6
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from A Jain, A Complete Tutorial on Ridge and Lasso Regression
in Python

Plot for alpha: 1e-15 Plot for alpha: 1e-10 Plot for alpha: 0.0001
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Basis Pursuit/LASSO

» The Lasso estimate is defined as

N P i
Blasso — argmin Z(yi — By — ZX,:,',BJ'V + A Z ’/BJ’
CARNC = j=1 j=t

An alternative reformulation is
N P
Al . 2
39 = argmin > (vi—fo— >_ X))
X Bz j=1

P
subject to Z 1Bj| <t
j=1



from A Jain, A Complete Tutorial on Ridge and Lasso Regression

in Python
Plot for alpha: 1e-05 15 Plot for alpha: 0.0001

Plot for alpha: 1e-10 15

-15 -15 -15
10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55
15 Plot for alpha: 0.001 15 Plot for alpha: 0.01 15 Plot for alpha: 1

0s

00

-05

-15 -15
150 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55

[m] = =




LASSO vs Ridge

» Because of the nature of the constraint, the LASSO does
some sort of subset selection

» When t is chosen sufficiently small, some of the coefficient
that were small in Ridge regression will be set exactly to zero
by the Lasso formulation.



LASSO vs Ridge (H, T, F)
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s =t/ Y % |B;|. A vertical line is drawn at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.
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FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer ezample, as
the tuning parameter X is varied. Coefficients are plotted versus df(\), the effective
degrees of freedom. A vertical line is drawn at df = 5.0, the value chosen by
cross-validation.



LASSO vs Ridge (H, T, F)
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FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2| < t and 7 + B3 < t*, respectively,
while the red ellipses are the contours of the least squares error function.



Going back to frequentist vs Bayesian

» Assume that we measure labels which can be expressed as a
linear function of the data up to some gaussian noise

yi = f(X;) + 05, oi ~N(0,0%)

» In particular, we now know that y; has a gaussian distribution
with mean f(Xj;) and variance o

. )12
p(YIX, ) o ] [exp (—W) (1)

» taking the log, we get the log-likelihood

Yj—
—logp(Y|X, B Z ; 202



Going back to frequentist vs Bayesian

» This (i.e RSS) approach corresponds to a uniform prior on the
parameters.

» Now we want to add a prior.

> Let us assume for example that the weights should follow
independent Gaussian distributions

1

Pe)= (5 ) oo (-2078) @)



Going back to frequentist vs Bayesian

> If we add this to the MLE framework, and take the log, we
get the (Bayesian) MAP estimator

A
ﬂMAP,gauss:an - arggnln Z )) + EIBTﬁ

j=1

» Does that remind you something?

» The ridge regression estimate is the Bayesian estimator with
Gaussian prior,

5 MAP,gaussian — B ridge



Going back to frequentist vs Bayesian

> Instead of a Gaussian prior, assume that the weights follow
independent Laplace distributions

B ~ Laplace(0, Al)

P(B) = 2Xexp(=A[f])

> let us substitute this in the expression for the posterior
p(y|X,B)p(3), and take the log

N d
A i A
BMAP, Laplace = arg;mn > (= FX)° + D) > 16l
i—1

Jj=1

» The LASSO estimator is equivalent to do Bayesian inference
with a Laplace prior, Bmap,Lapiace = BLasso



Going back to frequentist vs Bayesian
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Many other choices of priors/regularizers are possible

» We can generalize the LASSO and Ridge regression models to
other "log prior densities”
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FIGURE 3.12. Contours of constant value of Ej |B;]|% for given values of q.

From Hastie, Tibshirani, Friedman



