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Principal components (General Intro I)

I The principal components of a set of data provides a sequence
of best linear approximations to the data.

I Consider a sequence of prototypes x1, . . . , xN . Instead of
learning a simple linear regression for the data, we might want
to learn a rank-q linear model

f (λ) = µ+ Wλ

I W is a p × q matrix with orthogonal unit vectors as columns

I We then might want to fit this model to the data in order to
learn the first q directions which best describe this data



Principal components (General Intro II)

I Fitting the rank-q model to the data is done by minimizing
the reconstruction error

min
µ,{λi},W

N∑
i=1

‖x i − µ−Wλi‖2

I Optimizing with respect to µ and λi first, we get

µ∗ =
1

N

N∑
i=1

xi

λ∗i = W T

(
x i −

1

N

N∑
i=1

x i

)



Principal components (General Intro III)

I Substituting the expressions for the mean µ and the
coefficients λi in the expression of the reconstruction error, we
get

min
W

N∑
i=1

∥∥∥(x i − x̄)−WW T (x i − x̄)
∥∥∥2

where we let x̄ = 1
N

∑N
i=1 x i

I P = WW T is a projection matrix that maps each point
x i − x̄ onto the subspace spanned by the q columns of W



Principal components (General Intro IV)

min
W

N∑
i=1

∥∥∥(x i − x̄)−WW T (x i − x̄)
∥∥∥2

I Let us use X to denote the N × p matrix whose rows
corresponds to the N prototypes x i .

I The solution that minimizes the reconstruction error can be
computed directly through the Singular Value Decomposition
(SVD) of X .

I If we use X = UDV T to denote the SVD of X , the solution
for W consists of the first q columns of V (principal vectors
or principal directions). Given those columns, the principal
components scores are encoded in the first q columns UqDq.



Conventions

I There seems to be two conventions regarding the designation
of the vectors, (i.e. the columns of W that span the linear
subspace) and the scores, W TX (i.e the projection of the
original points onto those vectors defining the coefficients of
the linear combination, x i =

∑q
i=1 λiw i )

I The first convention calls principal components the vectors
encoded in the columns of W and principal component scores
the weights W TX

I The second convention calls principal axes, principal direction
or even principal component vectors the columns of V and
designate as principal components the weights W TX



PCA: Main Theorem

Classical Principal Component Analysis (Murphy 2012)

Suppose we want to find an orthogonal set of L linear basis vectors
w j ∈ RD and the scores z i ∈ RL such that we minimize

J(W ,Z ) =
1

N

N∑
i=1

‖x i − x̂ i‖2

where x̂ i = Wz i , subject to the constraint that W is orthonormal.
Equivalently, we can write this objective as
J(W ,Z ) = ‖X −WZT‖2F where Z is an N × L matrix with the
z i as rows and ‖A‖F is the Frobenius norm of the matrix A which

is defined as ‖A‖F =
√∑m

i=1

∑n
j=1 a

2
ij

The solution is then given by setting Ŵ to V L where V L contains
the L largest eigenvectors of the empirical covariance matrix
Σ̂ = 1

N

∑N
i=1 x ixT

i



Principal components: illustration I

H,T,F, Elements of Statistical Learning



Principal components: illustration II

H,T,F, Elements of Statistical Learning



Principal components: illustration III

H,T,F, Elements of Statistical Learning



Sparse Principal Component Analysis (I)

I In PCA, we are often interested in deriving an interpretation
of the principal directions vj . In particular, we want to
understand which component plays a more important role.
This is typically made easier when the vectors are sparse.

I In genomics, one is interested in datasets where each variable
correspond to a specific gene. Enforcing spare principal
components will enable the researchers to focus exlusively on
a subset of the genes which might be more closely related to
each other

I In financial data analysis and portfolio hedging, one is
interested in hedging the risk by writing the value of the
portfolio as a combination of few factors (e.g. level, spread
and convexity). Simple approach would assign non zero
weights to all assets which implies high fixed transaction costs



Sparse Principal Component Analysis (II)

I The approaches in sparse PCA focus either on the maximum
variance property of the principal components or the minimum
reconstruction error.

I Maximal Variance (e.g. SCoTLASS). For a X ∈ RN×p

max vTXTXv , subject to

p∑
j=1

|vj | ≤ t, vTv = 1

I Minimum reconstruction error. Here, if we let xi to denote the
i th component of X , we solve

min
θ,v

N∑
i=1

‖x i − θvTx i‖22 + λ‖v‖22 + λ1‖v‖1 s.t. ‖θ‖2 = 1



Sparse Principal Component Analysis (III)

I When considering multiple components, the minimum
reconstruction error approach naturally extends as

min
Θ,V

N∑
i=1

‖x i −ΘV Tx i‖22 + λ

K∑
k=1

‖vk‖22 + λ1

K∑
k=1

‖vk‖1

subject to ΘTΘ = IK

I The criterion is not jointly convex with respect to V and Θ
but it is convex in each parameter with the other fixed, and it
can thus be minimized iteratively.



Non negative matrix factorization

I Non Negative matrix factorization provides an alternative to
PCA in which the data matrix as well as its factorization are
assumed to be non negative. For a data matrix X we look for
a factorization X ≈WH with xij , hij ,wij ≥ 0

I As the quantitities are non negative, one approach is to
minimize an extension of the Kullback Leibler divergence to
matrices (Lee and Seung 2001)

D(WH ||X ) =
N∑
i=1

p∑
j=1

(
X ij log(

X ij

(WH)ij
)− X ij + (WH)ij

)



Non negative matrix factorization

I One can show (see Theorem 2 in Lee and Seung 2001) that
the divergence D is non increasing under the updates

W ia ←W ia

∑
µHaµX iµ/(WH)iµ∑

ν Haν

Haµ ← Haµ

∑
i W iaX iµ/(WH)iµ∑

k W ka

I Just as PCA and sparse PCA, Non Negative Matrix
Factorization finds applications in bioinformatics and
genomics where it is used to identify patterms of mutations

I It is also used in text mining (see for example Arora et al.,
2013) where it is applied to document/term matrices which
encode the number of occurence of specific terms in a
sequence of documents.



Factor Analysis (General Introduction I)

I For a data matrix X , the singular value decomposition,
X = UDV T can be interpreted as a latent variable
representation.

I Writing S =
√
NU and AT = DV T/

√
N, we have X = SAT

I Each of the columns of X (encoding the prototypes) can be
viewed as a linear combination of the columns of S , i.e.

X1 = a11S1 + a12S2 + . . .+ a1pSp

X2 = a21S1 + a22S2 + . . .+ a2pSp
...

...

Xp = ap1S1 + ap2S2 + . . .+ appSp



Factor Analysis (General Introduction II)
I The particular choice S =

√
NU is important because it

implies Cov(S) = NUU∗ = NI (I.e the correlated vectors X i

are expressed as a linear combination of the uncorrelated
vectors S j)

I The issue with such a latent representation is that it is not
unique. For a given matrix X , we can always write
X = AS = ARRTS = A∗S∗ for any matrix orthogonal p × p
Q.

I Factor analysis alleviates this by reducing the number of
degrees of freedom and considering the decomposition

X1 = a11S1 + a12S2 + . . .+ a1qSq + ε1

X2 = a21S1 + a22S2 + . . .+ a2qSq + ε2
...

...

Xp = ap1S1 + ap2S2 + . . .+ apqSq + εp



From Factor Analysis to Independent Component Analysis

I In Factor Analysis, the latent factors S are encoding the
common source of variation among the prototypes (and
account for the correlation) while the εi are particular to each
Xi and encode the remaining variation

I Independent Component Analaysis (ICA) has the same form
as Factor Analysis except that it relies on independence
among the signals S`.

I Recall that two variables X1 and X2 are independent if an only
if their joint pdf is factorizable as

p(Y1,Y2) = p1(Y1)p2(Y2)

where p1(Y1) and p2(Y2) denote the marginals
p1(Y1) =

∫
p(Y1,Y2) dY2 and equivalently for p2(Y2).



From Factor Analysis to Independent Component Analysis

I Independence in particular implies that for any two functions
h1(Y1) and h2(Y2), we have

E {h1(Y1)h2(Y2)} = E {h1(Y1)}E {h2(Y2)}

I The key idea in ICA is to assume that the observations
x1, . . . , xn can be represented as mixtures of n independent
components S1, . . . ,Sn.

I Note that the decomposition X = AS implies an ambiguity
regarding the magnitude of the independent components si as
well as their ordering.

I Any scaling αs in s can be compensated by a scaling (1/α)A
in A and we can always replace the weight matrix A and the
components matrix S by a permutation P of those matrices

X = AP−1PS



From Factor Analysis to Independent Component Analysis

I The most famous example of application of Independent
Component Analysis is the coktail party problem.

I In this problem which is also known as blind source separation
or blind signal separation consists in unmixing signals from
their linear combination (as one would for example try to
recover disctinct speeches from the recording of their linear
combination taped by multiple microphones)

I Besides the applications to sound signals, ICA has also been
applied successfully to EEG and ECG, financial data
processing and any other problem in which latent sources are
mixed linearly and carry meaningful information.



I ICA has been important in the study of brain dynamics where
the assumption is that signals recorded at each electrode are
mixtures of independent potentials arising from different
cortical activities.

source: Calhoun et al, 2002



source: HTF, The Elements of Statistical Learning



From Factor Analysis to Independent Component Analysis
I Unlike in PCA, ICA requires the distributions of the sources to

be non Gaussian (Gaussian independent components can only
be defined up to a rotation and the use of Gaussian priors
thus prevents identifiability of the factors)

I To illustrate the need for non Gaussian priors, think of PCA for
which we have seen that the decomposition is invariant to any
orthogonal transformation of the sources and mixing matrix.
PCA can thus recover the best linear subspaces in which the
signals live but it cannot recover those signals uniquely

I This phenomenon can be observed by taking two independent
sources with uniform distributions and mix them by
multiplying them with any mixing matrix M

I We then obtain a set of observations on which we can apply
both PCA and ICA. The result of PCA (which is known as
whitening) recovers the data up to a rotation.



From Factor Analysis to Independent Component Analysis

source: H,T,F, The Elements of Statistical Learning



From Factor Analysis to Independent Component Analysis
I There exists several algorithm to solve the ICA problem. One

of them (which we will cover later) compute the MLE by
minimizing the negative log-likelihood.

I Another popular approach is to rely on the notion of entropy.
For a random variable Y with density g(Y ), the differential
entropy is defined as

H(Y ) = −
∫

g(Y ) log(g(Y )) dy

I Given the entropy, a natural measure of independence
between the components of the random vector Y is the
mutual information I (Y ),

I (Y ) =

p∑
j=1

H(Yj)− H(Y )



From Factor Analysis to Independent Component Analysis

I I (Y ) can also be interpreted as the Kullback-Leibler
divergence between the joint density g(Y ) and the
independent version of this density

∏p
j=1 g(Yj) where gj(Yj)

here denotes the marginal density of the j th component Yj .



ICA in practice (I)
I Recall that ICA is interested in extracting an independent

representation of the data.

fS(s) =

p∏
j=1

fj(sj)

I One approach, on top of requiring X = AS , with A unitary, is
to require those components to have independent tilted
Gaussian distributions. (We take tilted Gaussians to avoid the
uncertainty associated to Gaussians)

fj(sj) = φ(sj)e
gj (sj )

I The log-likelihood then reads

`(A, {gj}pj=1 ; X ) = log(p(X )|A, {gj}pj=1)

=
N∑
i=1

p∑
j=1

[
log(φj(a

T
j xi )) + gj(a

T
j xi )

]



ICA in practice (II)
I Without any additional constraints, the log-likelihood is

over-parametrized

`(A, {gj}pj=1 ; X ) = log(p(X )|A, {gj}pj=1)

=
N∑
i=1

p∑
j=1

[
log(φj(a

T
j xi )) + gj(a

T
j xi )

]
I A popular approach is then to maximize a regularized version

p∑
j=1

[
1

N

N∑
i=1

(
log(φ(aTj xi ) + gj(a

T
j xi ))

)
−
∫
φ(t)egj (t) dt

]

−
p∑

j=1

λj

∫ {
g ′′(t)

}2
(t) dt

I The first penalty enforces normalization
∫
φ(t)e ĝj (t) = 1. And

the second enforces some regularization on the function gj ,
j = 1, . . . , p.



Principal components vs Independent components



Principal curves

I Just as we defined principal components, we can study
representation of the data through principal curves. In this
framework, we introduce the parametrized smooth curve f (λ).

I f (λ) is a smooth vector function with p components
f (λ) = (f1(λ), f2(λ), ..., fp(λ)), each component fi (λ) being a
smooth function of the parameter λ

I We say that f (λ) is a principal curve for the data distribution
of X if

f (λ) = E {X | λf (X ) = λ}

where λf (X ) is the mapping from X to the closest point on
the curve. In other words fλ should be the average of all the
prototypes that project onto λ



Principal curves

Typical algorithms then iterate over the following two steps

I Average the points that relate to the same λ

f̂j(λ)← E {X j |λ(X ) = λ}

I Update the parametrization λ so that the curve gets as close
as possible to this average

λ = argmin
λ′

∑
j

‖f̂j − fj(λ
′)‖

I The method iterates between those two steps until
convergence, starting, for example from the linear principal
component



Principal Curves

source: H,T,F, The Elements of Statistical Learning


