
Introduction to Machine Learning.
CSCI-UA 9473, Lecture 10.

Augustin Cosse

Ecole Normale Supérieure, DMA & NYU
Fondation Sciences Mathématiques de Paris.

2018

Manifold Learning

I With an increase in the volume of data, learning algorithms
are facing new challenges.

I Irrelevant and correlated features add to the computational
complexity

I Understanding large amounts of data thus requires extracting
information out of them. Otherwise such data is useless

Manifold Learning

I Many examples of high dimensional data exhibiting such
redundancy arise in computer vision.

I As a particular instance, consider the problem of estimating
where a person is looking. This information can be
particularly useful to an automated agent as it often gives a
clear indication on where objects of interest are located.

I The main difficulty lies in the raw (i.e pixel) information that
the agent receives

I Most of the time, the agent ”only gets to see a few samples
from which it needs to interpolate and generalize the various
scenarios”

source: Nakul Verma, Mathematical Advances in Manifold Learning

Manifold Learning

I The agent is thus faced with the problem of finding an
appropriate representation of the data based on which it can
complete and/or interpolate the samples.

I Manifold learning is interested in inferring some global
properties of high dimensional objects (i.e the manifold) from
a few samples.

source: Nakul Verma, Mathematical Advances in Manifold Learning

Manifold Learning: the basics
I We say that a function f : U 7→ V is a diffeomorphism if it is

smooth (all partial derivatives exist and are continuous) and
invertible with a smooth inverse.

I A subset M⊂ Rd is said to be a smooth n-manifold if M is
diffeomorphic to Rn. That is to say at each p ∈M, one can
find an open neighborhood U ⊂ RD such that there exists a
diffeomorphic map between U ∩M and Rn.

source: Nakul Verma, Mathematical Advances in Manifold Learning

Manifold Learning: the basics

I An embedding is a representation of a topological object (e.g.
graph, manifold) in a certain space (RD) in such a way that
the topological properties are preserved

I As an example, the embedding of a manifold preserves open
sets

I We will call intrinsic dimension of a random vector y , the
minimal number of parameters or latent variables needed to
describe y . (The intrinsic dimension is also the topological
dimension of the support of the distribution of the vector y)

Manifold Learning

Manifold Learning. From 3D to 2D embedding

source: Lee and Verleysen, Non Linear Dimensionality reduction

Manifold Learning: Some applications

I Manifold learning methods have played an important role in
the prevention and treatment of diseases (Golchin et al. 2014)
including

I Diagnosis of cancer and brain tumor progression

I Abnormalities in the walking cycle

I Abnormalities on the left ventricle in cardiac ECG images

I Other applications include

I Face recognition

I Motion tracking in video surveillance

I Pose estimation

Manifold Learning: Main interests

I Data compression

I Denoising, deblurring

I Visualization and curse of dimensionality

I Image interpolation for high resolution movies (reasonable
distance metric definition)

Source: Advanced Perception, UCBerkeley, David R. Thompson

Manifold Learning: Image interpolation

Source: Advanced Perception, UCBerkeley, David R. Thompson

Manifold Learning: Pose estimation

I In computer vision and robotics, a typical task is to identify
objects and to determine each object’s position.

I The combination of position and orientation of an object is
known as the pose.

I The ability to accurately estimate the pose of generic object
categories from videos or images is crucial in many
applications such as robotic manipulation, human-object
interaction, image indexing,...

Source: Mei et al., Robust Object Pose Estimation via Statistical

Manifold Modeling D. Yang, Hierarchical regression learning for car pose

estimation.

Manifold Learning: Car pose estimation (II)

D. Yang, Hierarchical regression learning for car pose estimation.

Manifold Learning for Pose estimation

I Pose estimation can be considered as a classification problem
(discrete set of angles), or as a regression problem
(continuous motion)

I Another important application of pose estimation is
autonomous driving (AD). In AD, the pose (a.k.a. viewing
angles) of a vehicle indicates the front direction of the car

I Car pose estimation is important problem in intelligent
transportation systems. ”[...]The viewing angles of
surrounding vehicles of an autonomous driving car imply its
possible past and future paths.” [D. Yang, Hierarchical
regression learning for car pose estimation.]

Manifold Learning: Car pose estimation (III)

D. Yang, Hierarchical regression learning for car pose estimation.

Manifold Learning: Car pose estimation (IV)

M. A.-Nachimson et al., Implicit 3D Shape Models for Pose Estimation

F. Engelmann et al. Joint Object Pose Est. and Shape Rec. in Urban

Street Scenes Using 3D Shape Priors

Manifold Learning: Car pose estimation (V)

Source: M. Arie-Nachimson, R. BasriConstructing, Implicit 3D Shape

Models for Pose Estimation

Manifold learning for car pose estimation

I ”Large variation of the low level input imagery feature usually
makes the mapping challenging” D. Yang, Hierarchical regr.
learn. for car pose est.

I ”The existing regression methods for vehicle viewpoint
direction incorporate manifold locality into either explicit
feature representation [13, 14] or implicit regression model
training [4]” D. Yang, Hierarchical regr. learn. for car pose
est.

Manifold learning: Different sources of variability

Source: Roy R. Lederman et al.

Manifold learning: Body pose estimation

Source: N. Sarafianos et al., 3D Human pose estimation: A review of the

literature and analysis of covariates

Manifold learning: Body pose estimation

I The recovery of a 3D body pose is a fundamental aspect of
human motion analysis

I The human body is an articulated object moving through the
3D space and is constrained by 3D body kinematics and
dynamics as well as the dynamics of the activity being
performed.

Source: A. Elgammal and C. Lee, Inferring 3D Body Pose from

Silhouettes using Activity Manifold Learning

Manifold learning: Body pose estimation

I The problem appears in a variety of fields including

I Human computer interaction (computers can be controled by
human gestures or can recognize sign languages)

I Human robot interaction. Domestic robots should be able to
perceive human body pose

I Video surveillance (in smart surveillance systems, human
motion conveys the action of the subject. Manual monitoring
is impossible and a system should assist focusing on events of
interest)

I Gaming and other VR applications (Microsoft Kinect)

I Sport performance analysis (analyzing the actions of athletes
from multiple views),

I ...

Source: Sarafianos et al.

source: Elgammal et al.

Sources: V. Blanz, T. Vetter, SIGGRAPH ’99
R. Urtasu, D. Fleet, P. Fua, CVPR 2006
M.J. Black, Estimating Human Motion: Past, Present, and

Future, october 2018.

Manifold learning methods

I Multidimensional Scaling (MDS)

I Isometricfeaturemapping (ISOMAP)

I Locally linear embedding (LLE)

I Self Organizing maps (SOM)

I Laplacian eigenmaps

I Diffusion maps

I ...

Multidimensional scaling (MDS)

I Multidimensional scaling refers to a family of methods which
construct a lower dimensional representation of the dataset
from information on interpoint distances.

I MDS has been widely used in the humanities such as
psychology, economics or sociology in which it is particularly
interesting because it can be used with a notion of similarity
between points.

I MDS does not require interpoint distances but can be applied
from a similarity measure only.

Multidimensional scaling (MDS)

I The classical multidimensional scaling approach preserves
inner products instead of distances. I.e in classical
multidimensional scaling, we start with similarities sij . If not
given similarities explicitely, we use pairwise inner products.

I The classical stress function is thus defined as

EC (z1, . . . , zN) =
∑
i ,j

(si ,j − 〈z i − z , z j − z〉)

Where the similarity is thus often given by the centered inner
products sij ≡ 〈x i − x , x j − x〉.

1. If available data consists of points x i , stack them into a
matrix Y then center them, compute the pairwise inner
products S = Y TY and go to third step

2. If available data consists of pairwise Euclidean distances,
transform them to inner products.
Square the distances and build the matrix B
Perform double centering of B to get S̃ .

S̃ = (I −M)B(I −M)

3. Compute the eigenvalue decomposition S̃ = UΛU∗

4. The p-dimensional representation is obtained by computing
the product

Ẑ = I p×NΛ1/2U∗

Isometric feature mapping I (ISOMAP)

I Isometric feature mappings (ISOMAP) is the simplest non
linear dimensionality reduction approach that uses graph
distances as an approximation to geodesic distances.

I The original ISOMAP follows from replacing the Euclidean
distance in Classical multidimensional scaling by a graph
distance.

I During the first step, the method determines which points are
neighbors on the manifold based on pairwise distances
between points in the original/input space.

Isometric feature mapping II (ISOMAP)

I The two most common approaches are to consider the points
lying in a given Euclidean ball around each point x i , or to
simply consider the neighborhood to be the K nearest
neighbors.

I The method then builds a graph G by connecting
neighbouring points with edges of weights wij = d(i , j).

I The second step estimates the pairwise geodesic distances
dM(i , j) of the prototypes by computing the shortest path
distances in the graph G.

I Finally, the last step applies classical Multidimensional scaling
to the matrix of graph distances Di ,j = (dG(i , j))

Locally linear embedding (LLE)

I Locally linear embedding is a topology preserving method
which is originally due to Roweis and Saul

I In LLE the idea is to define a lower dimensional embedding
but keep the local affine structure of the data

I Locally linear embedding then relies on the assumption that
the manifold underlying the data is locally (i.e at the level of
the local K -neighborhood) linear (which seems a reasonable
assumption when the dataset is large enough and not too
noisy).

Locally linear embedding (LLE)

I After computing the neighborhoods, the second step in LLE
then computes the linear combination of the K neighbours
that best approximates every given point x i from the dataset,

min
w
‖x i −

∑
k∈N (x i)

wi ,kxk‖2.

Here we let N (x i) to denote the k nearest neighbors of x i .

I The low dimensional representation is then given by

min
z
‖z i −

∑
k∈N (z i)

wi ,kzk‖2.

Self organizing maps I (SOM)

I The idea underlying Self Organizing Maps goes back to the
work of von der Malsburg in 1973.

I The idea which was then developed as a way to better
understand the visual cortex then remained under the radar
until the 80’s, when Kohonen came with a simplification of
the ideas of von der Malsburg and provided an easy
implementation.

I Because of their relative simplicity, SOMs are used in a variety
of areas including time series prediction and data visualization.

Self organizing maps II (SOM)

I In classical quantization, a smaller set of prototypes is used to
approximate (i.e to fit) a larger set of points from the original
space. However, the prototypes are free to move
independently of each other.

I The idea of SOMs is similar except that in SOM all
prototypes are connected to each other through a lattice (i.e
the prototypes are living on a N-D lattice) also called
Constrained topological map.

I Each time a prototype is updated and moved, its neighbors on
the lattice move accordingly.

I By doing this, we ensure that the points in the dataset
corresponding to points that are close on the lattice, will be
close to each other as well.

Self organizing maps III (SOM)

I Self organizing maps start from a two dimensional rectangular
lattice of prototypes z j ∈ RN .

I The prototypes can be initialized for example as lying on the
two dimensional principal component plane of the data (the
prototypes are then often chosen to be equispaced on that
plane). The SOM procedure then slowly bends the
plane/lattice to match it as much as possible with the original
data.

I In the case of SOM, the lattice thus plays the role of the
embedding space. SOM runs through the dataset multiple
times (performing multiple epochs).

Self organizing maps IV (SOM)

I For any given point x i from the original dataset, the first step
determines the index of the closest point on the lattice,

γ∗ = argmin
γ

d(x i , z(γ))

Here d is the Euclidean distance.

I The second step then updates the prototypes z(γ) as

z(γ)← z(γ) + αN (γ, ζ)(x i − z(γ))

I N (γ, ζ) is called the neighborhood function. This function is
defined by a (threshold) parameter N = Nθ and was defined
in the original von der Malsburg paper to be the Bubble
function,

N (γ1,γ2; θ) =

{
0 when dG(γ1,γ2) > θ
1 when dG(γ1,γ2) ≤ θ

Self organizing maps V (SOM)

I The neighborhood function is also sometimes defined from the
gaussian kernel, as

Nθ(γ1,γ2) = exp

(
−
d2
G(γ1,γ2)

2θ2

)

The distance dG is often chosen to be any distance defined on
the lower dimensional space, i.e., dG(γ1,γ2) = d(γ1,γ2). The
threshold parameter θ is also often chosen to decrease with
the epochs from a starting value θ0 to 1 (over about a
thousand iterations).

Self organizing maps IV (SOM)

I At the end of the iterations, the mapping

f : x 7→ f (x) = z(γ1,x , . . . , γP,x) = z(γx)

from any point of the original dataset to the points on the
lattice is obtained by simply taking the nearest prototype on
the lattice, i.e.

f (x i) = z(γ) with γ = argmin
γ

d(x i , z(γ)).

SOM: Original manifolds

source: Lee and Verleysen, Non Linear Dimensionality reduction

SOM: lattice definition and embedding

source: Lee and Verleysen, Non Linear Dimensionality reduction

Laplacian eigenmaps

I The notion of Laplacian eigenmap was first introduced by
Belkin (2003). Just as in Isomap, the method starts by
building a graph representation of the data

I The difference is that the algorithm builds the lower
dimensional embedding of the data by using the Laplacian of
the graph.

I Moreover it is based on the minimization of the local
distances. In that sense the algorithm can be considered as
belonging to the class of spectral decomposition NLDR
techniques.

I Laplacian eigenmaps can in fact be considered as an
intermediate between ISOMAP (which uses graph distances
but in a global framework) and locally linear embeddings
which use Euclidean distances but locally.

Laplacian eigenmaps: constraints

I To compute the lower dimensional embedding, the method
can be understood as minimizing a criterion of the form

`(z) =
1

2

m∑
i ,j=1

‖y i − y j‖wij

under appropriate constraints.

I When the wij represent the edges of the similarity graph, we
get the following decomposition∑

i ,j

(y i − y j)
2Wij =

∑
i

y2i Dii +
∑
j

y2j Djj − 2
∑
i ,j

yiyjWij

= 2yTLy

which is based on the graph Laplacian L = D −W ,
Dii =

∑
j Dij .

Laplacian eigenmaps: constraints

min
yTDy=1

`(z) = min
yTDy=1

1

2

m∑
i ,j=1

‖y i − y j‖wij = min
yTDy=1

2yTLy

I The first constraint yTDy removes arbitrary scalings
(including y = 0) by requiring the vectors y to be normalized.

I Finding the optimal embedding in the above framework is
thus equivalent to finding the eigenvectors corresponding to
the smallest eigenvalues of the graph Laplacian.

I Any graph always admits 1 as a trivial eigenvector of the
Laplacian (i.e L · 1 = 0). If the graph is connected, 1 is the
only trivial eigenvector.

I We can thus remove the trivial solution by only retaining the
eigenvectors that are orthogonal to 1, 〈y , 1〉 = 0.

Laplacian eigenmaps: general algorithm (Part I)
I Build a graph by putting an edge between points i and j if x i

and x j are close. There are two approaches at defining
distances

1. ε-neighborhoods. Two nodes i and j are connected by an edge
if ‖x i − x j‖2 < ε (for the usual Euclidean norm)

2. K nearest neighbors. Here two nodes i and j are connected by
an edge if i is among the K nearest neighbors of j .

I Weighting of the edges. There are again two possible
variations

1. Heat kernel. Whenever the nodes i and j are connected, set
the distance as

Wij = exp(−‖x i − x j‖2/t)

Where t ∈ R is a parameter. Otherwise, set Wij = 0.

2. Hard thresholding. Simply set Wij = 1 if points i and j are
connected by an edge and Wij = 0 otherwise.

Laplacian eigenmaps: general algorithm (Part II)

I Assume the graph G constructed above is connected,
otherwise proceed with each connected component.

I Compute eigenvalues and eigenvectors of the generalized
eigenvector problem,

Lv = λDv

I D is the diagonal weight matrix given by the sum
Dii =

∑
j Wji ,

I L is the Laplacian matrix L = D −W (positive semidefinite)
which can be thought of as an operator on functions defined
on vertices of G .

I Let 0 = λ0 ≤ λ1,≤ . . . , λm to denote the solutions to the
eigenvalue problem above so that Lv0 = λ0Dv0,...
Lvm = λmDvm. We then define the embedding as

x i = (v1[i], . . . , vm[i])

Diffusion maps

I Many robotic applications require repeated on demand motion
planning in mapped environments in the presence of other
dynamic agents

I Having a function encoding pairwise cost-to-go is important
for finding feasible paths

I Computing and storing pairwise potentials can be impractical
as it requires computing every query to any given new goal

I To reduce this computational complexity, it is possible to
learn the map’s geometry and develop a memory efficient
parametrization

I Each state in the map is turned into a diffusion coordinate
and the states are then compared through traditional
Euclidean distance.

source: YF Chen et al., Motion Planning with Diffusion Maps.

Diffusion maps

source: YF Chen et al., Motion Planning with Diffusion Maps.

Diffusion maps: Theory

I Diffusion maps (Coifman 2006) rely on a combination of
graph representation and Markov chain sampling (or
equivalently random walks on the graph)

I A diffusion maps embeds data into a lower dimensional space
where Euclidean distance between points approximates the
diffusion distance in the original feature space

I Given a graph representation of a manifold and standing at
one of the vertices, it is more likely to go to one of the
neighbors of this vertex than to one that is far away

I We thus interpret connectivity (and similarity between
features) as a measure of probability

Source: Coifman and Lafon, Diffusion maps

de la Porte et al. An Introduction to Diffusion Maps

Diffusion maps: Theory
I We thus interpret connectivity (and similarity between

features) as a measure of probability,

p(x , y) ∝ connectivity(x , y) ∝ k(x , y) = exp(−‖x − y‖2

α
)

I Here we decided to use the Gaussian kernel, although any
other kernel would appropriate

I To keep a probability measure, we normalize the connectivity
as

p(x , y) = connectivity(x , y)

=
1∑

y∈X k(x , y)
k(x , y)

=
1∑

y∈X k(x , y)
exp(−‖x − y‖2

α
)

Source: Coifman and Lafon, Diffusion maps

de la Porte et al. An Introduction to Diffusion Maps

Diffusion maps: Theory

I Given the probability p(x , y) we introduce the row normalized
(Markov) transition/diffusion matrix Π,

Πij = p(x i , x j)

I The matrix Π encodes some local information on how likely it
is to move from x i to x j when following a random walk of
length 1.

I Similarly, (Π)tij gives the probability to go from points x i to
point x j when following a random walk of length t.

I Diffusion maps use t as a scale parameter. Running the chain
forward in time (i.e. taking larger powers of Π) will reveal
geometric features of the dataset at different scales.

Diffusion maps: Theory

I The multiscale nature of diffusion maps is illustrated through
the following example taken from Coifman and Lafon, 2006.
In this example, the transition matrix at times t = 8, t = 64,
t = 1024. Note how the local structure of the dataset
completely vanishes at large t.

Source: Coifman and Lafon, Diffusion maps

Diffusion maps: Theory

I So far we have spoken about random walks and paths in the
graph representing the data but we haven’t discussed the
embedding.

I Given the transition matrix, we define the diffusion distance as

Dt(x , y) ≡ ‖pt(x , ·)− pt(y , ·)‖2L2

=

∫
X

(pt(x , u)− pt(y , u))2
dµ(u)

π(u)

I Dt(x , y) will be small when there is a large number of paths
between x and y . That is when for a large number of vertices
u in the graph it is very likely to go from x to u and similarly
likely to go from u to y . (I.e there is a community)

I On the other hand, if it is very likely to go from x to a whole
subset of u at which it is very unlikely to reach y , that
probably means x and y are in different communities.

Diffusion maps: The Algorithm
I Choose a kernel (e.g. kε = e−‖x−y‖

2/ε)

I Set d(x) =
∫
X k(x , y) dµ(y) or d(x) =

∑
y∈X k(x , y)

(discrete) and define the transition matrix of the chain as

Πi ,j = p(x i , x j) =
k(x i , x j)

d(x)

I Compute the eigenvalue decomposition of the transition
matrix Π (let us label the eigenvalues and eigenvectors as
(λk , ψk))

I Finally define the embedding Ψ(t), at each scale t, as

Ψt(x) =

λt1ψ1(x)
λt2ψ2(x)

...
λtsψ(s)(x)

I x encodes the Position/index in the input space.

Diffusion maps: wrapping up

I By choosing a particular value of t, Diffusion maps thus
enable to select a particular scale for our analysis of the data.

I Diffusion maps can be understood as going one step further
than other manifold learning methods as they as they also
require us to specify which scale we want the embedding to
represent

I In practice the diffusion distance has a discrete form

‖y i − y j‖2 ≡
∑
u∈D
|pt(x i ,u)− pt(x j ,u)|2

