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What have we seen so far? (1)

v

Data distribution in nature are often highly complex

v

Learning = understand the distribution from a few samples

v

Two possible statistical approaches :

» Bayesian : maximizes the posterior and relies on the definition
of a prior

» Frequentist : no prior but estimation through repeated samples
(sampling distribution)

v

Supervised Learning (patterns = (input 4-output) pairs) :
Two classes of models

» Regression (labels are continuous)

» Classification (labels (classes) are discrete/finite)



What have we seen so far? (Il)

» Among all possible regression models, the simplest = linear
regression

> Linear regression can also be applied after non linear
transformation of the data X' = ¢(X) (Ex.

#(X) = X2, log(X),...)
» Quality of a prediction depends on the Bias variance tradeoff

» Generally speaking, as the model complexity increases, the
variance tends to increase and the bias tends to decrease.

> Ideally, we want to trade bias off with variance to minimize
the prediction/test error



What have we seen so far? (Ill)

» When data is linear, linear regression has 0 bias.

» We can reduce the variance of the simple linear model by
adding regularization

Formulation Regularization

1 .
mﬁin EHy — XB|15+ M|Bllo | Best subset selection

1 .
mﬂin EHY — XBl13 + MBI Lasso regression

1
mﬂin EHY — XBl13 + A|8II3 Ridge regression




Today

> Linear and generalized linear models for classification

» Examples in Python
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» There are two main approaches at classification

» First approach relies on the use of a discriminant function
which assigns each vector x; to a specific class Cy

» Second approach is to use a the conditional distribution
p(Ck|x) in an inference stage and then use this posterior to
make the decision.

» There are two ways to determine the conditional probability
p(Crlx)

» Either use a model for p(Ck|x) directly (discriminative
approach)

» Or use a model for the class conditional densities p(x|Cx)
together with a prior p(Cy) for the classes (generative
approach).

p(x|Ci)p(Ck)

PEPI =)



Discriminant functions

» Linear classifiers = linear decision boundaries (possibly in
augmented space)

» Simplest representation for a linear discriminant function is to
take a linear function of the input

y(x)=B8"x+Bo

» Recall that just as in regression, every algorithm we will cover
is also applicable if we first apply a fixed non linear
transformation of the input variables ¢(X).



From two classes to multiple classes

» In the two classes cases, the simplest way to discriminate
between the classes for a new pattern X, is to compute
y(x) = B"x + By and then set

x €C1 y(x) >0 (sometimes y(x) > 1/2)
x € Co otherwise.

» What do we do when there are multiple classes?

» One possibility would be to define K — 1 classifiers each
separating class Cy from the rest of the dataset (One vs rest)

» Another approach could be to introduce K(K — 1)/2
classifiers, discriminating between each pair of classes. A point
would then be classified through a majority vote. (One vs One)



From two classes to multiple classes

From Bishop, Pattern recognition and ML

C
R3

Cy
not C;

not Co

Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-
biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to
distinguish points in class Cy, from points not in class C.. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes Cx and C;.



An alternative: Multiclass RSS

» Consider a set of patterns Xi, X3, ..., X, that are grouped as
rows [1, Xk] in the matrix X

» The class of each pattern Xj is described by a binary vector
Yk = (0,1,0,...,0)

» We know from regression that (under some conditions) the
model minimizing the RSS criterion can read as

Y =X(X"X)"'X"Y =XB

» Y is called the indicator response matrix and B is called the
coefficient matrix



An alternative: Multiclass RSS

» For a new input X, we compute the output as
f(X)=[1,x]"B

» Thus getting values y, from each of the classifiers Sy,
B =[34,3,,...,0k] for the K classes

» To determine the class of X, we simply take class that
outputs the largest label

G(X) = argmax f(X)
keC

where % (X) = [1,X]7 B, and By is the k™ column of B.



RSS is not always a good idea (1)

» The discriminant RSS solution ¥ = X(X"X)"'1XTY = XB
suffers from some severe problems

» First, The RSS solution penalizes solution that are "too”
correct (lie a long way on the correct side of the decision
boundary)

» Second, the RSS solution corresponds to assuming a Gaussian
distribution for the conditional density which is clearly not true
(target vector ty are far from Gaussian)

» An alternative is given by logistic regression which we will
discuss below



RSS is not always a good idea (1)

C.M. Bishop, Pettern recognition and ML
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.



C.M. Bishop, Pettern

RSS is not always a good idea (1)
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Figure 45 Example of a synthetic data set comprising three classes, with training data points denoted in red
(x), green (+), and blue (o). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing

correct classification of the training data.



Fisher's linear discriminant (1)

» Classification models can be though of as applying a
dimenionality reduction step where we project the data points
x onto the normal to the separating hyperplane w, as
y=w'x

» When projecting high dimensional data on a one dimensional
vector, we lose a lot of information

» By choosing w appropriately, one can select a projection that
maximizes the class separation



Fisher's linear discriminant (I1)

> Let p1 and po denote the class means
1 1
“Fﬁlth “2:ﬁ22xk’
keCy keCo
» One way to maximize separation could be to take w to
maximize the separation of the projected class means
T
my—my=w' (p — p)

» Simply maximizing the projected mean difference would lead
to w = oco. An alternative would be to search only among
normalized vectors (as this does not change orientation)
lw|? =1.



Fisher's linear discriminant (I11)

» The result is then a projection on the vector
w = (1 — p12)/[|(11 — p2)|| joining the two means.
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.



Fisher's linear discriminant (1V)

» An alternative (due to Fisher) tries to maintain a large
separation of the projected class means while at the same
time keeping a small variance within each class (minimize
class overlap)

» The Fisher criterion maximizes the ratio of the separation of
(projected) class means to the total (projected) within-class
variance

2
(ma — m1)
Jw) =510
Sy + S5

where

(Proj.Mean) m;=w"p; = (1/N;) Z w ' x,
keC;

(Proj Varonce) = 3 (s~ e, = 3 O me?
keCy keCo



Fisher's linear discriminant (V)

» The Fisher criterion can read as a function of the unknown
weight vector w as

w'Bw
wTHw

J(w) =

with

B = (py — po) (1 — )"
H= (xk—p)(xk— 1)+ Y (xk = p2) (xk — 2) "

keCy kel

» Setting the derivative of J(w) to zero gives

(w'Bw)Hw = (w" Hw)Bw



Fisher's linear discriminant (V1)

v

Setting the derivative of J(w) to zero gives
(w'Bw)Hw = (w"Hw)Bw

» If you solve this equation for the direction ((w” Bw) and
(wT Hw) are scalars so we neglect them when trying to
understand the direction of the separating plane), you get

woc HH (pg — po)

» This result is known as Fisher discriminant (although it is
more a specific projection choice then a discriminant function
as we will see in LDA)

» A similar result holds when solving the RSS criterion (exercice)



Fisher's linear discriminant (Multiple classes)

» When we have K > 2 classes, we need to introduce multiple
features, y = (y1, 2, ..., ¥k) (Think of a binary pattern for
example)

» We then want to learn a separating hyperplane for each
feature. Those planes are stacked in a matrix
W = [wi,...,wk]sothat y = WTx



Fisher's linear discriminant (Multiple classes)

» One way to extend Fisher's criterion to multiple classes is to
introduce the between class and within class covariances
(after projection)

Sw = ZZ i — my)( —mk)T

k=1ieCy

K
s = Z Ni(my — m)(my —m)"
k=1

where m = (1/N) Zszl Nmy

» And find a criterion that maximizes the ratio of the between
class covariance to the within class covariance

» One example (Fukunaga): J(w) = Tr(s}, sg)



Linear Discriminant Analysis (I)

» Recall that Bayes gives (for class conditional densities fx and
priors Ty )
f(X)mi

S fl(X)me

» Then suppose we model the conditional class densities fi(X)

(# conditional densities P(Ck|X)) using a multivariate
Gaussian

P(Ck|X) =

fi(x) = (27T)P/i|):]1/2 exp(—%(x - Mk)Tz;l(x — 1))

» LDA arises when we assume that the classes have the same
covariance matrix X, = X Vk.



Linear Discriminant Analysis (II)

» To discriminate between classes, we can just look at the log

ratio
ot (B ) = (0 ) oo
= log C:Z) - %(Mk + o) TE T (e — o)

+xTE e — o)

> Equality between covariance matrices causes the quadratic
terms and normalizing factors to cancel

» The decision boundary (set of points x for which
P(Ck|X) = P(C¢|X) is linear in x.



Linear Discriminant Analysis (1)

> In particular we can now discriminate between classes using
the linear discriminant functions dy,

Sh(x) = xTE - Euk L Z 7 g + log(m)

> In practice we do not have access to the parameters of the
Gaussian distributions and we have to estimate them
empirically.
7k = Ni/N (N = number of observations in class Cy)

> fie = Diec, Xi/ Nk

> 2= 3 Y, (5 — ) (i — ) T/ (N = K)



Linear Discriminant Analysis (V)

» From this, the class of a new point x is set by choosing the
index k such that

[y

a1 -1

A 1l . 1&-1. 1
xTx (Mk—ue)>§MkTZ fik —

ATe"1A

She X fue — log(Nk/Ne)

» Note that if we choose to keep distinct covariance matrices,
we end up with quadratic discriminant functions

Six) = 2 Tom(IZil) — 3 (x — ) TE (x — ) + log(m)



Probabilistic classifiers

» For K classes we use a 1 of K coding scheme where
t=(0,1,0,...,0)
—_——
K times

whenever the pattern x,, belongs to the class C».

> t, can be interpreted as the probability that the pattern
belongs to the class Cy

» For non probabilitic classifiers, other choices of target
variables are possible {+1, —1} for example



Generalized linear models

> When defining a probabilistic classifier, we will want to make
sure that the posterior probabilities fall within the interval
[0, 1].

> In regression we used a model of the form
_ T
y(x)=pfo+ B x

» Probabilistic classifiers generalize this model to a function of
the form

y(x) = f(Bo+ B w)

» Here f(x) is known as the activation function and maps the
output of linear classifier to the [0, 1] interval. The inverse of
f(x) is called the link function.



Generalized linear models

» Because of the non linear activation function, models such sa
the one below are called generalized linear models

y(x) = (B0 + B w)

» An example of such a model is the perceptron classifier from
Rosenblatt

» Another example is the logistic regression classifier



Logistic regression (1)
» The idea behind logistic regression is to model posterior
probabilities P(Cx|X) as linear functions in x

» To ensure that the posterior probabilities sum to one and that
they remain in the interval [0, 1], we define the model as

Iog(P(C” )> ~ o+ BTX

P(Ck|X)
(R -t

P(Ck_1|X
log (W) = Bk-1)0 + B X



Logistic regression (II)

» You can check that

.
P(CkIX) = eXp(’Bk””BkX) k=1,...,K—1.

1+ Zz ] exp([i’go + BZTX)7
1

1+ 35 exp(Bo + B X)

> Logistic regression models are fit by Maximum likelihood

P(Ck|X) =

» Example: In the two classes framework, we let y; € {0,1}
denote the class (Cp or C1) of each point. l.e y; = 1 is point x;
is classified in C1. The probability that a point X has the
particular class C = y is thus given by

P(C = y|X) = P(C1|X)” P(Co| X))



Logistic regression (lII)

» Now taking the log, and assuming the samples are
independent, we get

I
™=

((B) {yilog(P(C1|X)) + (1 — yi) log(P(Co| X))}

i=1

I
.MZ

{yiﬁTXi — log(1 + eBTXi)}

i=1

» To solve this with respect to (3, apply the following Newton
Raphson scheme

9%((B) > 04(3)

Bkﬂgﬁk(@ﬂ@BT R



Discriminative vs Generative

» Remember the distinction between generative and
discriminative classifier ?

» In which class does logistic regression fall 7



Another generative classifier: Naive Bayes (I)

> let x = (X1, Xa,...,Xy) denote a vector from the training set
with features Xi, ..., Xy.

» The Naive Bayes classifier assumes that the features are
independent

» Recall that using Bayes theorem, one can write the class
posterior from given models for the class conditional densities
P(x|Ck) = fi(x) and priors for the probability of each class
P(Ck) = mk

» When features are independent, we can write f,(x) as

d
fie(x) = [ ] fue(Xe) (1)
(=1



Another generative classifier: Naive Bayes (II)

> From this, just as in LDA, we can write the log ratios
P(Ci|X)\ m1A(X)
log | =————~ ] = log
P(Ck|X) mafa(X)

g (m 7., mew)
72 [Ty fe2(Xe)

~og (2 >+zlog(

d

=1+ gu(Xp)
=1




