
Introduction to Machine Learning.
CSCI-UA 9473, Lecture 4.

Augustin Cosse

Ecole Normale Supérieure, DMA & NYU
Fondation Sciences Mathématiques de Paris.

2018

What have we seen so far? (I)

I Data distribution in nature are often highly complex

I Learning = understand the distribution from a few samples

I Two possible statistical approaches :

I Bayesian : maximizes the posterior and relies on the definition
of a prior

I Frequentist : no prior but estimation through repeated samples
(sampling distribution)

I Supervised Learning (patterns = (input +output) pairs) :
Two classes of models

I Regression (labels are continuous)

I Classification (labels (classes) are discrete/finite)

What have we seen so far? (II)

I Among all possible regression models, the simplest = linear
regression

I Linear regression can also be applied after non linear
transformation of the data X ′ = φ(X) (Ex.
φ(X) = X 2, log(X), . . .)

I Quality of a prediction depends on the Bias variance tradeoff

I Generally speaking, as the model complexity increases, the
variance tends to increase and the bias tends to decrease.

I Ideally, we want to trade bias off with variance to minimize
the prediction/test error

What have we seen so far? (III)

I When data is linear, linear regression has 0 bias.

I We can reduce the variance of the simple linear model by
adding regularization

Formulation Regularization

min
β

1

2
‖y − Xβ‖22 + λ‖β‖0 Best subset selection

min
β

1

2
‖y − Xβ‖22 + λ‖β‖1 Lasso regression

min
β

1

2
‖y − Xβ‖22 + λ‖β‖22 Ridge regression

Today

I Linear and generalized linear models for classification

I Examples in Python

I There are two main approaches at classification

I First approach relies on the use of a discriminant function
which assigns each vector xi to a specific class Ck

I Second approach is to use a the conditional distribution
p(Ck |x) in an inference stage and then use this posterior to
make the decision.

I There are two ways to determine the conditional probability
p(Ck |x)

I Either use a model for p(Ck |x) directly (discriminative
approach)

I Or use a model for the class conditional densities p(x |Ck)
together with a prior p(Ck) for the classes (generative
approach).

p(Ck |x) =
p(x |Ck)p(Ck)

p(x)

Discriminant functions

I Linear classifiers = linear decision boundaries (possibly in
augmented space)

I Simplest representation for a linear discriminant function is to
take a linear function of the input

y(x) = βTx + β0

I Recall that just as in regression, every algorithm we will cover
is also applicable if we first apply a fixed non linear
transformation of the input variables φ(X).

From two classes to multiple classes

I In the two classes cases, the simplest way to discriminate
between the classes for a new pattern Xµ is to compute
y(x) = βTx + β0 and then set

x ∈ C1 y(x) ≥ 0 (sometimes y(x) ≥ 1/2)
x ∈ C2 otherwise.

I What do we do when there are multiple classes?

I One possibility would be to define K − 1 classifiers each
separating class Ck from the rest of the dataset (One vs rest)

I Another approach could be to introduce K (K − 1)/2
classifiers, discriminating between each pair of classes. A point
would then be classified through a majority vote. (One vs One)

From two classes to multiple classes

From Bishop, Pattern recognition and ML

An alternative: Multiclass RSS

I Consider a set of patterns X1,X2, . . . ,Xn that are grouped as
rows [1,Xk] in the matrix X

I The class of each pattern Xk is described by a binary vector
yk = (0, 1, 0, . . . , 0)

I We know from regression that (under some conditions) the
model minimizing the RSS criterion can read as

Ŷ = X (XTX)−1XTY = XB̂

I Ŷ is called the indicator response matrix and B̂ is called the
coefficient matrix

An alternative: Multiclass RSS

I For a new input X , we compute the output as

f̂ (X) = [1,X]T B̂

I Thus getting values yk from each of the classifiers βk ,
B̂ = [β̂1, β̂2, . . . , β̂K] for the K classes

I To determine the class of X , we simply take class that
outputs the largest label

Ĝ (X) = argmax
k∈C

f̂k(X)

where f̂k(X) = [1,X]T β̂k and β̂k is the kth column of B̂.

RSS is not always a good idea (I)

I The discriminant RSS solution Ŷ = X (XTX)−1XTY = XB̂
suffers from some severe problems

I First, The RSS solution penalizes solution that are ”too”
correct (lie a long way on the correct side of the decision
boundary)

I Second, the RSS solution corresponds to assuming a Gaussian
distribution for the conditional density which is clearly not true
(target vector tk are far from Gaussian)

I An alternative is given by logistic regression which we will
discuss below

RSS is not always a good idea (II)

C.M. Bishop, Pettern recognition and ML

RSS is not always a good idea (II)

C.M. Bishop, Pettern recognition and ML

Fisher’s linear discriminant (I)

I Classification models can be though of as applying a
dimenionality reduction step where we project the data points
x onto the normal to the separating hyperplane w , as
y = wTx

I When projecting high dimensional data on a one dimensional
vector, we lose a lot of information

I By choosing w appropriately, one can select a projection that
maximizes the class separation

Fisher’s linear discriminant (II)

I Let µ1 and µ2 denote the class means

µ1 =
1

N1

∑
k∈C1

xk , µ2 =
1

N2

∑
k∈C2

xk ,

I One way to maximize separation could be to take w to
maximize the separation of the projected class means

m1 −m2 = wT (µ1 − µ2)

I Simply maximizing the projected mean difference would lead
to w =∞. An alternative would be to search only among
normalized vectors (as this does not change orientation)
‖w‖2 = 1.

Fisher’s linear discriminant (III)

I The result is then a projection on the vector
w = (µ1 − µ2)/‖(µ1 − µ2)‖ joining the two means.

Fisher’s linear discriminant (IV)

I An alternative (due to Fisher) tries to maintain a large
separation of the projected class means while at the same
time keeping a small variance within each class (minimize
class overlap)

I The Fisher criterion maximizes the ratio of the separation of
(projected) class means to the total (projected) within-class
variance

J(w) =
(m2 −m1)2

s21 + s22

where

(Proj .Mean) mi = wTµi = (1/Ni)
∑
k∈Ci

wTxk ,

(Proj .Variance) s21 =
∑
k∈C1

(yk −mk)2, s22 =
∑
k∈C2

(yk −mk)2

Fisher’s linear discriminant (V)

I The Fisher criterion can read as a function of the unknown
weight vector w as

J(w) =
wTBw
wTHw

with

B = (µ1 − µ2)(µ1 − µ2)T

H =
∑
k∈C1

(xk − µ1)(xk − µ1)T +
∑
k∈C2

(xk − µ2)(xk − µ2)T

I Setting the derivative of J(w) to zero gives

(wTBw)Hw = (wTHw)Bw

Fisher’s linear discriminant (VI)

I Setting the derivative of J(w) to zero gives

(wTBw)Hw = (wTHw)Bw

I If you solve this equation for the direction ((wTBw) and
(wTHw) are scalars so we neglect them when trying to
understand the direction of the separating plane), you get

w ∝ H−1(µ1 − µ2)

I This result is known as Fisher discriminant (although it is
more a specific projection choice then a discriminant function
as we will see in LDA)

I A similar result holds when solving the RSS criterion (exercice)

Fisher’s linear discriminant (Multiple classes)

I When we have K > 2 classes, we need to introduce multiple
features, y = (y1, y2, . . . , yK) (Think of a binary pattern for
example)

I We then want to learn a separating hyperplane for each
feature. Those planes are stacked in a matrix
W = [w1, . . . ,wK] so that y = W Tx

Fisher’s linear discriminant (Multiple classes)

I One way to extend Fisher’s criterion to multiple classes is to
introduce the between class and within class covariances
(after projection)

sW =
K∑

k=1

∑
i∈Ck

(y i −mk)(y i −mk)T

sB =
K∑

k=1

Nk(mk −m)(mk −m)T

where m = (1/N)
∑K

k=1Nkmk

I And find a criterion that maximizes the ratio of the between
class covariance to the within class covariance

I One example (Fukunaga): J(w) = Tr(s−1W sB)

Linear Discriminant Analysis (I)

I Recall that Bayes gives (for class conditional densities fk and
priors πk)

P(Ck |X) =
fk(X)πk∑K
`=1 f`(X)π`

I Then suppose we model the conditional class densities fk(X)
(6= conditional densities P(Ck |X)) using a multivariate
Gaussian

fk(x) =
1

(2π)p/2|Σ|1/2
exp(−1

2
(x − µk)TΣ−1k (x − µk))

I LDA arises when we assume that the classes have the same
covariance matrix Σk = Σ ∀k.

Linear Discriminant Analysis (II)

I To discriminate between classes, we can just look at the log
ratio

log

(
P(Ck |X)

P(C`|X)

)
= log

(
fk(X)

f`(X)

)
+ log(

πk
π`

)

= log

(
πk
π`

)
− 1

2
(µk + µ`)

TΣ−1(µk − µ`)

+ xTΣ−1(µk − µ`)

I Equality between covariance matrices causes the quadratic
terms and normalizing factors to cancel

I The decision boundary (set of points x for which
P(Ck |X) = P(C`|X) is linear in x .

Linear Discriminant Analysis (III)

I In particular we can now discriminate between classes using
the linear discriminant functions δk ,

δk(x) = xTΣ−1µk −
1

2
µTk Σ

−1µk + log(πk)

I In practice we do not have access to the parameters of the
Gaussian distributions and we have to estimate them
empirically.

I π̂k = Nk/N (Nk = number of observations in class Ck)

I µ̂k =
∑

i∈Ck
xi/Nk

I Σ̂ =
∑K

k=1

∑
i∈Ck

(xi − µ̂k)(xi − µ̂k)T/(N − K)

Linear Discriminant Analysis (IV)

I From this, the class of a new point x is set by choosing the
index k such that

xT Σ̂
−1

(µ̂k − µ̂`) >
1

2
µ̂Tk Σ̂

−1
µ̂k −

1

2
µ̂T` Σ̂

−1
µ̂` − log(Nk/N`)

I Note that if we choose to keep distinct covariance matrices,
we end up with quadratic discriminant functions

δk(x) = −1

2
log(|Σk |)−

1

2
(x − µk)TΣ−1k (x − µk) + log(πk)

Probabilistic classifiers

I For K classes we use a 1 of K coding scheme where

t = (0, 1, 0, . . . , 0)︸ ︷︷ ︸
K times

whenever the pattern xµ belongs to the class C2.

I tk can be interpreted as the probability that the pattern
belongs to the class Ck

I For non probabilitic classifiers, other choices of target
variables are possible {+1,−1} for example

Generalized linear models

I When defining a probabilistic classifier, we will want to make
sure that the posterior probabilities fall within the interval
[0, 1].

I In regression we used a model of the form

y(x) = β0 + βTx

I Probabilistic classifiers generalize this model to a function of
the form

y(x) = f (β0 + βTw)

I Here f (x) is known as the activation function and maps the
output of linear classifier to the [0, 1] interval. The inverse of
f (x) is called the link function.

Generalized linear models

I Because of the non linear activation function, models such sa
the one below are called generalized linear models

y(x) = f (β0 + βTw)

I An example of such a model is the perceptron classifier from
Rosenblatt

I Another example is the logistic regression classifier

Logistic regression (I)

I The idea behind logistic regression is to model posterior
probabilities P(Ck |X) as linear functions in x

I To ensure that the posterior probabilities sum to one and that
they remain in the interval [0, 1], we define the model as

log

(
P(C1|X)

P(CK |X)

)
= β10 + βT1 X

log

(
P(C2|X)

P(CK |X)

)
= β20 + βT2 X

...

log

(
P(CK−1|X)

P(CK |X)

)
= β(K−1)0 + βTKX

Logistic regression (II)

I You can check that

P(Ck |X) =
exp(βk0 + βTk X)

1 +
∑K−1

`=1 exp(β`0 + βT` X)
, k = 1, . . . ,K − 1.

P(CK |X) =
1

1 +
∑K−1

`=1 exp(β`0 + βT` X)

I Logistic regression models are fit by Maximum likelihood

I Example: In the two classes framework, we let yi ∈ {0, 1}
denote the class (C0 or C1) of each point. I.e yi = 1 is point xi
is classified in C1. The probability that a point X has the
particular class C = y is thus given by

P(C = y |X) = P(C1|X)yP(C0|X)(1−y)

Logistic regression (III)

I Now taking the log, and assuming the samples are
independent, we get

`(β) =
N∑
i=1

{yi log(P(C1|X)) + (1− yi) log(P(C0|X))}

=
N∑
i=1

{
yiβ

T xi − log(1 + eβ
TXi)

}
I To solve this with respect to β, apply the following Newton

Raphson scheme

βk+1 ← βk −
(
∂2`(β)

∂β∂βT

)−1
∂`(β)

∂β

Discriminative vs Generative

I Remember the distinction between generative and
discriminative classifier ?

I In which class does logistic regression fall ?

Another generative classifier: Naive Bayes (I)

I let x = (X1,X2, . . . ,Xd) denote a vector from the training set
with features X1, . . . ,Xd .

I The Naive Bayes classifier assumes that the features are
independent

I Recall that using Bayes theorem, one can write the class
posterior from given models for the class conditional densities
P(x |Ck) = fk(x) and priors for the probability of each class
P(Ck) = πk

I When features are independent, we can write fk(x) as

fk(x) =
d∏
`=1

fk`(X`) (1)

Another generative classifier: Naive Bayes (II)

I From this, just as in LDA, we can write the log ratios

log

(
P(C1|X)

P(CK |X)

)
= log

(
π1f1(X)

π2f2(X)

)
= log

(
π1
π2

∏d
`=1 f`1(X`)∏d
`=1 f`,2(X`)

)

= log

(
π1
π2

)
+

d∑
`=1

log

(
f`,1(X`)

f`,2(X`)

)

= α1 +
d∑
`=1

g1,`(X`)

