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Previous lecture

I General overview
I What is Machine Learning?
I How does it fit between deep Learning and Artificial

Intelligence?
I What are the different classes of methods?

I What are the risks ?

I What are the challenges?

I What are we going to do during the class ?



Remember the algorithms we are going to study?

From CWS 2018, decision making with Amazon SageMaker



Today

I General reminders on statistics and probability

I Bayesian vs Frequentist

I First (short) intro to online (programming) tools



Statistics and probability

I Why using stats/proba?

I Machine Learning relies on complex distributions (cancerous
cells, possible moves in Go, Existing sign roads, possible
evolutions of stocks, connections between people, words,..)

I Only a few samples are usually available

I ⇒ We need a way to measure how well those samples are
representing the underlying (unknown) distribution



Why is that important?







Reminders (I)

(Discrete sets of events)

I Sum rule p(X ) =
∑

Y p(X |Y )

I Product rule p(X ,Y ) = p(X |Y )p(Y )

I Bayes theorem

p(Y |X ) =
p(X |Y )p(Y )

p(X )

(continuous sets of events)

I density p(x), marginalizing

p(x ∈ [a, b]) =

∫ b

a
p(x)dx , p(x) =

∫
p(x , y)dy



Reminders (II)

I Cumulative distribution Function (CDF) F (z) =
∫ z
−∞ p(x) dx

I Expectation E[x ] =
∫
xp(x)dx , E[x ] =

∑
i xip(xi )

I Conditional expectation Ex f (x |y) =
∑

x f (x)p(x |y)

I Variance Var[x ] ≡ E
{

(x − Ex)2
}

I Covariance Cov[x , y ] ≡ E {(x − Ex)(y − Ey)}



Reminders (III) A few important distributions

I The gaussian distribution

N (x |µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x − µ)2

)

I Uniform distribution: P(y) = 1
|b−a| , y ∈ [a, b]

I χ2 distribution: χ2 ∼
∑N

i=1 Zi
2 with Zi independent standard

normal RV.



Reminders (IV) A few important distributions

I Binary variables: Bernoulli and Rademacher,

Bern(x |µ) = µx(1− µ)1−x , x =

{
1
0
, 0 ≤ µ ≤ 1

Rademacher: ε(x) =


(1/2), x = +1
(1/2), x = −1
0, otherwise



Reminders (IV) A few important distributions

I Beta distribution

Beta(x |a, b) =
1

B(a, b)
x (a−1)(1− x)b−1

B(a, b) ≡ Γ(a)Γ(b)

Γ(a + b)

I Γ(a) is the Gamma function.



The exponential family

I Many of the distributions we have discussed are part of a
general family called The exponential family

I The exponential family has many interesting properties
I It is the only family of distribution with finite-sized sufficient

statistics

I It is the only family with known conjugate priors

I It is at the core of generalized linear models

I it is at the core of variational inference

I we will come back to these notions later



The exponential family

I A pdf p(x |θ) is said to be in the exponential family for
x = (x1, . . . , xm) and θ ⊆ Rd if

p(x |θ) =
1

Z (θ)
h(x) exp(θTφ(x)

= h(x) exp(θTφ(x)− A(θ))

I Z (θ) and A(θ) are defined as

Z (θ) =

∫
Xm

h(x) exp[θTφ(x)] dx

A(θ) = log(Z (θ))

I Z (θ) is called the partition function, θ are the mutual
parameters, φ(x) ∈ Rd is the vector of sufficient statistics,
A(θ) is the log partition function or cumulant function.



The exponential family

I Two examples
I Bernoulli

Ber(x |µ) = µx(1− µ)1−x = exp(x log(µ) + (1− x) log(1− µ))

= exp(φ(x)T θ)

I Univariate Gaussian

I The Uniform distribution does not belong to the exponential
family



Parameter/model inference: Bayesian vs frequentist

I The linear regression model is a special instance of a more
general idea called model inference (among which one finds
the MLE)

I We will study the notion of inference in more details later in
the class. For now we only cover the main ideas.

I Inference can be used in both supervised (learn new labels
from training labels) and unsupervised (learn parameters from
distribution) frameworks

I You will often hear about frequentist vs Bayesian approaches.



Parameter/model inference: Bayesian vs frequentist

I Bayesian statistics.
I Considers the (distribution) parameters as random

I Relies heavily on the posterior distribution p(θ|D)

I dominated statistical practice before 20th century

I Ex: MAP argmax
θ

P(D|θ)P(θ)

I Frequentist statistics (a.k.a classical stat.)
I Parameters θ viewed as fixed, sample D as random

(Randomness in the data affects the posterior)

I Relies on the likelihood or some other function of the data

I dominated statistical practice during 20th century

I Ex. MLE : argmax
θ

P(D|θ)



Bayesian statistics: Some vocabulary

I We saw Bayesian inference relies on the posterior p(θ|D)

I The posterior reads from the Bayes rule as

p(θ|D) =
p(D|θ)p(θ)

p(D)

=
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

I p(θ) is called the prior, p(D|θ) is called the likelihood function
and Z = p(D) is the normalizing constant (independent of θ)

I Given a set of patterns (xµ, yµ), classifiers are usually of two
types:

I Generative (learn model for p(x , y |θ))
I Discriminative (learn model for p(y |x , θ))



Bayesian statistics: Some vocabulary
I An example of discriminative classifier : Logistic regression

I Here we take µ(x) = sigm(wTx) and define the classifier as a
Bernoulli distribution

p(y |x ,w) = Ber(y |µ(x))

I Good when the output is binary

I An example of generative classifier : Naive Bayes
I relies on the assumption that the features (hidden variables)

are independent

p(x |y = c ,θ) =
D∏
j=1

p(xj |y = c , θjc)

I θj,c is the parameters of the distribution of class c for j th entry

in the D-dimensional pattern vector x ∈ {1, . . . ,K}D .

I We will study those models in further detail when discussing
classifiers.



Bayesian statistics

I In Bayesian statistics, randomness is most often used to
encode uncertainty

I The posterior p(θ|D) summarizes all we know on the
parameters

I Bayesian inference is not always the right choice because of
the following

I The Mode is not a typical point in the distribution

I MAP estimator depends on re-parametrization



Bayesian statistics: Drawbacks and solutions

I A solution to the first part is to use a more robust loss
function `(θ̂, θ)

I A solution to the second part is to replace the MAP with the
following estimator (when available)

θ̂ = argmax
θ

p(D|θ)p(θ)|I (θ)|−1/2 (1)

where I (θ) is the Fischer information matrix



Fischer information matrix

I For a generative model p(x |θ), we let g(θ, x) denote the
Fischer score

g(θ, x) = ∇θ log(p(x |θ))

I the Fischer Kernel is the defined as

k(x , x ′) = g(θ, x)TF−1g(θ, x ′)

I The matrix F is called the Fischer matrix and defined as

F = Ex

{
g(θ, x)g(θ, x)T

}
I Note that it is often computed empirically as

F ≈ 1

N

N∑
n=1

g(θ, x)g(θ, x)T



Occam’s razor and Model selection

I Only looking for the best model often leads to overfitting (we
will see that later in more details)

I Bayesian framework offers and alternative called Bayesian
model selection

I For a family of models, we can express the posterior

p(m|D) =
p(D|m)p(m)∑
m∈M p(m|D)

∝ p(D|m)p(m)

where p(D|m) =
∫
p(D|θ)p(θ|m)dθ is called the marginal

likelihood, integrated likelihood or evidence



Occam’s razor

I Integrating the parameters θ such as in

p(D|m) =

∫
p(D|θ)p(θ|m)dθ

acts as a natural regularization and prevents overfitting when
solving for maxm p(m|D). This idea is known as Bayesian
Occam’s razor

I The evidence p(D|m) can be understood as the probability to
generate a particular dataset from a family of model (all
values of the parameters included).

I When the family of models is too simple, or too complex, this
probability will be low.



Bayesian decision theory

I How do we resolve the lack of robustness of Bayesian
estimators vis a vis the distribution (recall the bimodal
distribution)?

I Statistical decision theory can be viewed as a game against
nature.

I Nature has a parameter value in mind and gives us a sample

I We then have to guess what the value of the parameter is by
choosing an action a

I As an additional piece of information, we also get a feedback
from a loss function L(y , a) which tells us how compatible our
action is w.r.t Nature’s hidden state.



Bayesian decision theory

I The goal of the game is to determine the optimal decision
procedure,

argmin
a∈A

E {L(y , a)}

I In economics L(y , a) = U(y , a) and leads to the Maximum
utility principle which is considered as rational behavior

δ(x) = argmax
a∈A

E {U(y , a)}

I In the Bayesian framework, we want to minimize the loss over
the models compatible with the observations {xµ}

δ(x) = argmin
a∈A

Ep(θ|{xµ}) {L(θ, a)} =
∑
θ∈Θ

L(θ, a)p(θ| {xµ}µ)



Bayesian decision theory (continued)

I The MAP is equivalent to minimizing a 0/1 loss

L(θ̂, θ) = 1θ 6=θ̂ =

{
0 if θ̂ 6= θ

1 if θ̂ = θ.

we then have

EL(θ̂, θ) = p(θ 6= θ̂| {xµ}µ) = 1− p(θ̂ = θ| {xµ}µ)

= 1− p(θ̂ = θ| {xµ}µ)p(θ|xµ)

which is maximized for θ̂ = θ with θ taken as

θ∗({xµ}µ) = argmax
θ̂

p(θ| {xµ}µ)



What do we do with noisy data?

I Is it possible to take more robust losses?

I `2 loss, L(θ̂, θ) = |θ̂ − θ|2 gives posterior mean

E
{

(θ̂ − θ)2|xµ
}

= E[θ2|xµ]− 2θ̂E[θ|xµ] + θ̂2

I setting derivative to 0, ∂θ̂E{θ̂|xµ} = 0, we get

−2E {θ|xµ}+ 2θ̂ = 0

θ̂ =

∫
θp(θ|xµ) dθ



What do we do with noisy data? (continued)

I Is it possible to take more robust losses?

I `1 loss, L(θ̂, θ) = |θ̂ − θ| gives posterior median

I The value θ̂ such that

p(θ < θ̂|xµ) = p(θ ≥ θ̂|xµ) = 1/2



What do we do with noisy data? (continued)

I Now assume θ̂ defines the value of some hidden variable y
(e.g. the class of a point xµ defined by a gaussian mixture θ̂).

I Finding the optimal parameters (or equivalently estimate the
hidden state) can be done by considering the error

Lg (θ, θ̂) = E(xµ,yµ)∼p(xµ,yµ|θ)

{
`(θ, fθ̂)

}
=
∑
xµ

∑
yµ

`(yµ, fθ̂(xµ))p(xµ, yµ|θ)

I The Bayesian approach then minimizes the posterior expected
loss

argmin
θ̂

∫
p(θ|D)Lg (θ, θ̂) dθ

I Note that here the model is fixed and we want to learn the
parameters (>< model selection)



How to pick up the priors?

I The controversial aspect of Bayesian statistics are the priors

I The main argument of Bayesians is that we most often know
something about the world

I When it is possible, it makes things easier to pick up a prior
from the same family as the likelihood function

I Another choice is to use uninformative priors



Hierarchical Bayes (I)

I Sometimes we want to use several levels of (hyper-)parameters

D ← m ← (α, β)

I The resulting model is known as Hierarchical Bayes or
multi-level model

I E.g.: related cancer rates



Hierarchical Bayes (II)

I We want to predict cancer rates in various cities. Suppose we
measure the number of people in each city i , Ni , and the
number of cancers xi

I we assume that the number of cancers follows a Binomial,
xi = Bin(Ni , θi )

I We could assume that all rates are independent or all the
same θi = θ for all i . An alternative is to assume θi are similar
but with some inter city variation

p(D, θ, η|N) = p(η)
N∏
i=1

Bin(xi |Ni , θi )Beta(θi ,η)



Empirical Bayes

I In graphical models, we will need to compute the posterior on
multiple levels of latent variables

I Imagine a two level posterior p(η, θ|D) = p(D|θ)p(θ|η)p(η)

I Sometimes it is possible to get rid of the first order parameters
by marginalizing (whenever we can compute the integral)

I then we can estimate the second order parameters as

η̂ = argmax
η

p(D|η) = argmax
η

[∫
p(D|θ)p(θ|η)dθ

]
I This approach is called Empirical Bayes or Type II maximum

likelihood (in ML sometimes called the evidence procedure)



The Frequentist approach

I Unlike the Bayesian framework, the frequentist framework
does not treat the parameters as random variables

I Frequentist statistics thus does not rely on the use of priors

I In frequentist statistics, randomness occurs from the variation
across multiple trials

I The estimator is computed by applying some function to the
data,

θ̂ = δ(D)



The Frequentist approach

I Uncertainty is encoded in the sampling distribution.

I Assume that we have access to S data sets generated from
p(·, θ∗)

I for each dataset, we get one estimator θ̂(Ds), s = 1, . . . ,S

I When taking S →∞, the distribution we obtain is called
sampling distribution.

I The sampling distribution is the distribution encoding the
uncertainty on the estimator



Frequentist decision theory

I In Frequentist statistics there is a loss and a probability
distribution

I but there is no prior and hence, no posterior

I To select an estimator, the frequentist framework considers
the expected loss

R(θ∗, δ) = Ep(D̃|θ∗)

[
L(θ∗, δ(D̃))

]
=

∫
L(θ∗, δ(D̃))p(D̃|θ∗)dD̃

I The problem is that we do not have access to θ∗..



Frequentist Decision theory: possible fixes

I One way would be to nevertheless consider a posterior on θ∗.

I In this case we could write

R(δ) = Ep(θ∗)[R(θ∗, δ)] =

∫
R(θ∗, δ)p(θ∗)dθ∗

I One estimator (which then becomes Bayesian) is then given by

δB = argmin
δ

RB(δ)

I The problem is that in the Frequentist setting , we don’t want
to do Bayesian stats



Frequentist Decision theory: possible fixes

I An alternative is to define the maximum risk

Rmax(δ) ≡ max
θ∗

R(θ∗, δ)

I The minimax estimator is then defined as

δMM ≡ argmin
δ

Rmax(δ)



How to choose the estimators optimally?

I Frequentist decision theory does not provide a way to choose
the best estimator

I There are however desirable properties that we will usually
want the estimator to have

I Consistency. An estimator is consistent if

θ̂(D)→ θ∗ when |D| → ∞

I An estimator is said to be unbiased if

bias(θ̂(·)) = Ep(D|θ∗)

{
θ̂(D)− θ∗

}
= 0

I An estimator is assymptotically optimal if it achieves the
smallest assymptotic variance among all unbiased estimators

Var(θ̂) ≥ 1

nI (θ∗)
Cramer-Rao bound



How to choose the estimators optimally?

I On more thing..

I Although we cannot really choose an optimal estimator within
the frequentist framework because we don’t have access to
the true parameter θ̂

I However there are estimators which are always better than
other whatever be the value of θ∗

I When two estimators δ1 and δ2 are such that

R(θ∗, δ1) ≤ R(θ∗, δ2), for all θ∗

I We will say that δ1 dominates δ2

I Finally we say that θ̂ is admissible if it is not strictly
dominated by any other estimator



How about the MLE?

I The MLE is a consistent estimator (corresponds to minimizing
KL(p(·, θ∗), p(·, θ̂)))

I How about the bias ? Let’s check the MLE for the Gaussian
distribution

Mean : bias(µ̂) = E

{
1

N

N∑
i=1

xi − µ

}
= 0

Variance : Eσ̂2
ML =

1

N

N∑
n=1

(xn − µ̂ML)2 =
N − 1

N
σ2

I Although the MLE may be biased, it is assymptotically
unbiased

I MLE meets the Cramer-Rao bound and is this assymptotically
unbiased



The bias variance tradeoff

I Suppose we choose to select our estimator based on a
quadratic loss, L(θ̂, θ∗) = (θ∗ − θ̂)2

I The corresponding function E
{

(θ∗ − θ̂)2
}

is known as the

MSE

E
{[

(θ̂ − θ̄) + (θ̄ − θ∗)
]2
}

E
[
(θ̂ − θ̄)2

]
+ 2(θ̄ − θ∗)E

{
θ̂ − θ∗

}
+ (θ̄ − θ∗)2

= E
{

(θ̂ − θ̄)
}

+ (θ̄ − θ∗)2

= var(θ̂) + bias2(θ̂)

I MSE = variance + bias2



The bias variance tradeoff (H,T,F, Elem. of stat. Learning)



Empirical risk (I)

I In practice, we cannot compute the risk function in the
frequentist setting

I It is however possible to optimize the loss in
regression/prediction problems instead of hidden variables
estimation

I In regression, we have a loss of the form L(y , δθ̂(x)) (we
minimize mismatch between labels)

R(p∗, δ) = Ex ,y [L(y , δθ̂)] =
∑
x

∑
y

L(y , δ(x))p∗(x , y)

I p∗(x , y) is unknown but we can replace it by the empirical
distribution

p∗(x , y) = pemp(x , y |D) =
1

N

N∑
i=1

δx i δyi



Empirical risk (II)

I From the empirical distribution, we can define the empirical
risk

Remp(D, δ) = R(pemp(·|D), δ) =
1

N

N∑
i=1

L(yi , δ(x i ))

I Taking L(y , δ(x)) = 1y 6=δ(x) gives the misclassification rate

I Taking L(y , δ(x)) = (y − δ(x))2 gives the mean sqaured error

I the optimal decision rule δ̂ is then obtained as

δ̂ERM = argmin
δ

Remp(D, δ)



Empirical risk (III)

I The empirical risk is equal to the Bayes risk if the prior on
nature’s distribution is that this distribution equals the
empirical distribution.

I As a consequence, the empirical risk will lead to overfitting

I One solution is to add a regularizer (we will go back to this
later when discussing regression)

R ′(D, δ) = Remp(D, δ) + λC (δ)

I C (δ) measures the complexity of the model.



Empirical risk (III)

I The empirical risk is equal to the Bayes risk if the prior on
nature’s distribution is that this distribution equals the
empirical distribution.

I As a consequence, the empirical risk will lead to overfitting

I One solution is to add a regularizer (we will go back to this
later when discussing regression)

R ′(D, δ) = Remp(D, δ) + λC (δ)

I C (δ) measures the complexity of the model.



Why is overfitting bad?



Structural risk and cross validation

I How do we choose the multiplier λ ?

I One possibility is to use cross validation.
I Assume that you have a prediction model P(x , θ̂) which gives

you outputs/labels

ŷ = P(x , θ̂)

I Where θ̂ is estimated by fitting some a model of order (i.e
complexity) m to the data

θ̂ = F(D,m)

I We now split the dataset D into folds Dk and Dk = D \ Dk



Structural risk and cross validation

I From the folds Dk , we can then write the risk R as

R(m,D,K ) =
1

N

K∑
k=1

∑
i∈Dk

L(yi ,P(x i ,F(Dk ,m)))

I When taking |Dk | = 1, this idea is called Leave one out cross
validation

I In this case, the risk is simply given by

R(m,D,N) =
1

N

N∑
i=1

L(yi , f
−i
m (x i ))

I How is that useful for regularization?

λ̂ = argmin
λ∈[λmin,λmax]

1

|Dtrain|

K∑
k=1

∑
i∈Dk

L(yi , f
k
λ (xi ))



Statistical Learning Theory

I Another approach would be to use statistical Learning theory
(SLT) to derive an upper bound on the risk

I Will be covered in more details at the end of the class

I For today just remember that the deviation between the
empirical risk and the population risk can be bounded as

P(max
h∈H
|Remp(D,h) − R(p∗, h)| > ε) ≤ 2dim(H)e−2Nε2



Summary

Bayesian Frequentist
Random parameters Deterministic parameters

but variability across trials

Optimizes posterior optimizes loss

MAP MLE

Max posterior is optimal Consistency, variance, bias

Model selection through Model selection only possible
posterior expected loss in prediction through emp. loss


