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Abstract—In nowadays prostate interstitial brachytherapy,
transrectal ultrasound guidance is typically used to localize the
prostate and the rectum. However, the ability of ultrasound to
distinct normal from cancer tissues is weak. In most treatments,
the organ as a whole is thus irradiated, leading to numerous
side effects such as urinary or sexual dysfunction. The quality
of magnetic resonance images (MRI), on the other hand, has
improved over the last few years and allows for an accurate
delineation of the tumor [1]. This paper proposes a novel
framework for MRI-US surface registration of the prostate and
the rectum. The preoperative MRI is first segmented using a
multiresolution graph-cut method. The intraoperative US image
is manually segmented by the surgeon. The registration is then
performed in two steps. In a first step, a bi-affine registration
is performed on the surfaces of the rectum and the prostate
using an expectation maximization iterative closest point method
(EM-ICP). In the second step, non-rigid registration is applied
to the distance maps resulting from the pre-registered surfaces.
Our approach has been applied on 5 MR/US pairs and shows a
relative independence between prostate and rectum motions.

I. INTRODUCTION

Prostate cancer is the most frequent diagnosed malignancy
in male over 50 years. In Europe in 2008, an estimated
382,000 cases were diagnosed while 90,000 deaths have
occured in 2008 [2]. In prostate brachytherapy as well as in
thermoablation therapy, ultrasound images are used to localize
the organs [3]. However, the usefullness of this intraoperative
visualization is compromised by the poor resolution of the
images and the impossibility to localize the tumor. Indeed,
transrectal ultrasound allows a correct identification of the
position and boundaries of the prostate, but does not allow
discriminating between normal and cancer tissue.

This paper proposes to register preoperative T2-weighted
magnetic resonance images (MRI) and intraoperative transrec-
tal ultrasound images (TRUS). T2-weighted images are images
which show the spin-spin or transverse relaxation time of
tissues. For more information concerning this first modality
see for example [4], [5]. Information concerning ultrasound
imaging can be found in [6].

MR/US registration is known to be challenging due to the
very different nature of these two modalities. A few examples
of such fusion have been proposed. Mitra et al [7] as well
as Makni et al [8], propose to deal with this issue by means
of thin plate splines. Martin et al [9] first segment prostate
and rectum in both modalities and then use surface meshes in
order to perform registration. Porter et al [10] use segmented
MR and US vessels as landmarks together with a correlation

scheme to define correspondences between the two images.
Finally, Reynier et al [11] perform a registration of point sets.
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Fig. 1. In order to fuse the information of the MR and US images, we use a
two-step process. In a first step, the organs are segmented in the preoperative
MR image. In the second step the extracted surfaces are registered with
manually defined segmentations in the US image.

This paper proposes a surface-based registration framework
for MR/US fusion (see figure 1). Prostate and rectum surfaces
are segmented from the MRI using an interactive multi-
scale graph-cut method that extends the classical graph-cut
segmentation [12], [13], [14], [15]. Corresponding surfaces in
the US image are manually segmented by the surgeon. A log-
euclidean polyaffine registration is then used to register the
two surfaces. Each affine component is first estimated using
an expectation maximization iterative closest point method
(EM-ICP) [16]. The obtained affine transformations are then
combined using the log-euclidian polyaffine framework (see
[17]) in order to obtain a deformation field on the whole image.
The deformed surfaces are encoded in as a distance map and
a non-rigid registration is performed using as fixed image the
US distance map and as moving image the distance map of
the deformed MR image.

The rest of this paper is organized as follows. Section II
introduces the different elements of the method, including the
graph-cut segmentation, the EM-ICP log-euclidian polyaffine
registration and the non-rigid registration. Section III presents



the segmentation and registration results on a set of MR/US
validation pairs. Finally, Section IV concludes and presents
some directions for future work.

II. METHODS

The proposed method consists in 2 parts : (1) a MR seg-
mentation step and (2) a MR-US surface registration step (cfr
figure 1). Section II-A briefly explains how the segmentation is
performed. Then, sections II-B and II-C review the registration
scheme.

A. Graph-Cut Segmentation of the MRI

Graph-cut segmentation is an efficient method when the
boundary cannot clearly be distinguished but when different
textures and structures are present within an object [12].
Given an image with intensity I(p) at voxel p and given
three sets of predefined seeds OB , OP , OR that belong to
the background, the prostate and the rectum respectively, the
graph-cut segmentation finds an optimal labeling function f
that assigns label f(p) to voxel p, minimizing some energy
function. The optimization respects the hard constraint that
f(s) = lj if s ∈ Oj for j = B,P,R.

In this paper, we propose to minimize the following en-
ergy [12]:

E(f) =
∑

{p,q}∈N

Vp,q(f(p), f(q)) + λ
∑
p

Rp(f(p)), (1)

where N is the set of all pairs of adjacent voxels. The first
term of (1) tends to assign the same label to adjacent voxels
that have similar intensities:

Vp,q(f(p), f(q)) =

{
exp

(
− (I(p)−I(q))2

2σ2

)
if f(p) 6= f(q)

0 otherwise.

The second term of (1) tends to assign label lj to p if I(p)
is close to the intensities of the seeds in Oj . Mathematically
speaking, this term is the negative log-likelihood of the voxel
intensity given that it would belong to Of(p):

Rp(f(p)) = − logP (I(p)|Of(p))

where the conditional probabilities are estimated by the
intensity histogram of the corresponding set of seeds.

Graph-cut finds the global minimum of (1) based on the
construction of a graph whose nodes correspond to the voxels
of the image added to two super-nodes : the sink (t) and the
source (s) (see figure 2) [18].
Let {l1 = lP , l2 = lR, l3 = lB} be our labels. We label l1 the
voxels that belong to the prostate, those who belong to the
rectum will be labeled l2 and finally the background will get
label l3. Then, we build graph G as follows. As in [18], the
set V = {p1, p2, q1, q2, . . . , s, t} of vertices still contains a
source s and a sink or terminal node t. Between those two
terminal nodes, we define 3 edges t1, t2, and t3 (see figure 2)
for each voxel. Each edge thus corresponds to one particular
label. Out of concern for clarity, we only represented part
of the graph since normally p1 has links with q1, r1, . . ., p2
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Fig. 2. In order to segment the image, a graph with nodes corresponding to
voxels and edges encoding the similarity between voxels is built. The graph
cut algorithm of [18] is then applied on this graph.

has links with q2, r2, . . ., etc. Edges weights are defined by
tpi = 1 + 2

∑
q∈Np

Wp,q + Rp(xp = i) for edges between
pi and pi+1 or between t (resp. s) and pi and by the usual
pairwise cost Wp,q = exp

(
− (I(p)−I(q))2

2σ2

)
for edges between

pi and qi.

Doing this, the labeling associated with a cut is defined as
follows : if the cut severs edge tpi we associate the label i to the
voxel p. and the weight of tpi , 1+2

∑
q∈Np

Wp,q+Rp(xp = i)

is added to the total cost. Moreover, if the cut severs edges tpi
and tqj for j < i then the weights of all edges E(pk, qk) for
j ≤ k < i will be added to the total cost of the cut.

Although very effective, graph-cut is computationally ex-
pensive for tridimensional images. A two-step approach is
therefore used. In a first step, graph-cut segmentation is
performed on a low resolution version of the image. Once this
first step has been completed, each low resolution voxel for
which the assigned label differs from one of its neighbors is
considered to be a boundary voxel. The corresponding nodes in
the graph are split into sub-nodes corresponding to the voxels
at higher resolution, and graph-cut is performed again on this
multi-resolution graph (Fig. 3).

Fig. 3. (Left) Multi-resolution representation resulting from a first segmen-
tation and the detection of the boundary. The high resolution content of the
image is used only around the boundaries, making the second step of the
graph-cut segmentation more efficient. (Right) The equivalent multi-resolution
image in which voxels of the boundary have been resampled to the higher
resolution.



B. Polyaffine Registration

Once the surfaces have been detected in the MRI by graph-
cut, they can be registered onto the surfaces defined in the US
image by the surgeon. In a first step, a polyaffine registration
is performed, which affinely aligns the two pairs of surfaces
independently and then combines the two transforms in the
log-euclidean domain [17].

The two independent affine components (one for each
organ) are estimated by EM-ICP [16]. This method has the
advantage of being very robust to noise and of allowing
the registration of partial surface onto a full surface. These
properties are interesting in our case since noise is introduced
by segmentation error in the graph-cut step.

Given two sets of points {si i = 1, . . . , NI} and {mj j =
1, . . . , NJ} corresponding to the organ in the MR and in
the US images respectively, EM-ICP finds the transformation
T that maximizes the log-likelihood of the correspondence
between pairs of points. EM-ICP alternates between updating
those probabilities considering T fixed (E-step) and optimizing
the parameters of T given the correspondence probabilities
(M-step). In other words, the E-step consists in computing

(AT )ij =
exp(−‖T · si −mj‖2 /2σ2)∑
k

exp(−‖T · si −mk‖2 /2σ2)
, (2)

for all pairs (si, mj) and the M-step consists in finding T
such that

T = argmin
T∈T∗

∑
i

‖T · si −mi‖2 , (3)

where T ∗ denotes the set of affine transformations and mi =∑
j

(AT )ijmj [16]. This amounts to solving a least squares

problem.
Once the affine transforms TP and TR have been computed

for the prostate and the rectum respectively, they can be
combined in a unique log-euclidean polyaffine transform as
described in [19]:

T (x) = exp
(
wP (x)LPx+ wR(x)LRx

)
Where exp (.) denotes the exponential map, and wP , wR

the weights associated with each transform (prostate and
rectum resp.).

C. Demons Distance maps Registration

Once the MR prostate and rectum surfaces have been
registered on the US image using the EM-ICP scheme of
the previous section, a distance map of the new image (i.e
representing registered prostate and rectum contours) can be
computed. On the other side, the same distance map can be
computed for the image which groups together the prostate
and rectum surfaces drawn by the surgeon in the course of
brachytherapy. In order to improve the polyaffine transforma-
tion, a demons registration (see [20]) is then applied taking
as fixed image the distance map of the US contours and

as moving image, the distance map of the registered MR
contours.

III. EXPERIMENTS AND RESULTS

This section reviews the results of the segmentation and
registration steps. At each time, the Dice Similarity Coefficient
(DSC) was used in order to assess the quality of the step.
For two segmentations S1 and S2, the DSC is computed by
equation 4. For typical DSC values see for example [21].

DSC (S1, S2) =
Volume (S1 ∩ S2)

1
2 (Volume(S1) + Volume(S2))

(4)

Section III-A assess the segmentation step using Dice Sim-
ilarity Coefficients between our segmentations and expert’s
MR segmentations. In section III-B, our registration results are
assessed. All registration transforms have been computed using
our semi-automatic contours obtained on the MR image (see
II-A) and the expert’s manual contours on the US image. In
order to include both segmentation and registration errors, the
DSC for the registration part was computed between expert’s
manual MR contours, after deformation by a transformation
computed thanks to the semi-automatic contours, and expert’s
manual US contours.

A. Segmentation

Segmentation has been applied on a validation set consisting
in 5 T2-weighted MR images of size 320 × 320 × X where
X was dependent on each image. Due to the low number of
subjects available, we used the first subject as a training to fit
the different parameters (σ,λ,...), and we validated the method
on the five other subjects. This ensures that the parameters do
not overfit the data.

The low resolution segmentation was applied on a subsam-
pled 160×160×X image and the segmentation was upsampled
in order to get the corresponding organ boundaries in the HR
image. For the low resolution segmentation, we used pairwise
cost std σ = 10, regional cost weight λ = 0.001.

The second segmentation was then applied on the multires-
olution image using a pairwise cost std σ = 25 for edges
between low resolution voxels solely, and a pairwise cost
std σ = 100 for edges between low and high resolution
voxels or between two high resolution voxels. For this second
segmentation, we used no regional cost except for the seeds
fixed costs (i.e λ was set to zero except for manually selected
seeds where it was set to 1).

Results obtained for this multiresolution segmentation were
good with mean prostate DSC of 0.72 and mean rectum DSC
of 0.78 (table I). One can see that the number of seeds used
never exceeds 8% of the prostate (resp. rectum) volume. Mean
number of seeds used was of about 5% of total prostate and
rectum volumes.

Figure 4 allows a visual assessment of the results. For each
patient (P1 to P5), 3 slices were selected as follows. The
first and last images correspond to the first and last slices
of the prostate manual contour and the second slice is given
by round((zfirst+zlast)/2) where zfirst and zlast denote the



Fig. 4. Results of Multi-resolution image segmentation algorithm for prostate
and rectum. Images show superposition of the prostate and rectum semi-
automatic contours (magenta and cyan) as well as expert’s manual contours
fo both prostate and rectum (red and green resp.) for 3 representative slices
of patients P1 to P5 (top to bottom).

numbers of the first and last slices respectively and round(.) is
the nearest integer. As can be seen on those images, results are
usually poorer at the base (low discrimination between prostate
and urethral bulb) and at the apex (low discrimination between
prostate and seminal vesicles) of the prostate. However, keep
in mind that the first and last slices are not representative of
the whole volume and most of the slices will therefore show a
coincidence level close to the coicidence on the middle slice.

TABLE I
SEGMENTATION DSC

P1 P2 P3 P4 P5 Mean Std
Prostate 0.75 0.72 0.70 0.72 0.73 0.72 0.02
Rectum 0.81 0.81 0.90 0.68 0.70 0.78 0.09

Seeds % pro. 3.1 4.8 4.9 7.8 4.6 5.04 1.7
Seeds % rect. 1.7 3.7 5.6 7.5 5.1 4.7 2.2
Seeds % bckg. 0.1 0.2 0.3 0.2 0.2 0.2 0.1

B. Registration

Affine prostate and rectum registrations were first performed
separately. Prostate affine registration was initialized thanks to

a first simple rigid registration based on a gradient descent on
the US distance map. For the rectum , we extrapolated the
partial surface on the US slice assuming it to be part of a
circle (namely the probe) and then simply mapped the upper,
middle, and lower MR and US contours on each other.

For the registration of rectum surfaces, we used a real noise
variance σ2

final = 0.32, initial variance coefficient ainit = 1,
annealing coefficient c = 1.005 and maximum Mahalanobis
distance µ2

max = 0.5. Namely, when computing the matrix
(AT )ij we only considered the points si and mj such that
‖T · si −mj‖2 < σ2µ2

max . For prostate surfaces, the same
algorithm was applied using real noise variance σ2

final = 0.12

initial variance coefficient ainit = 256, annealing coefficient
c = 1.1 and maximum Mahalanobis distance µ2

max = 0.25.
Again, mean Dice coefficients obtained were good (table II)
with mean values of 0.71 (prostate) and 0.68 (rectum). One
clearly sees that the deformation underwent by the rectum is
non-affine except when the shapes in both images are quite
similar (P3 and P5). In the case of the prostate, it seems
that the deformation could be defined by a simple affine
transformation.

TABLE II
AFFINE REGISTRATION DSC

P1 P2 P3 P4 P5 Mean Std
Prostate 0.76 0.71 0.70 0.70 0.69 0.71 0.03
Rectum 0.66 0.59 0.77 0.66 0.71 0.68 0.07

After this EM-ICP registration of prostate and rectum, the
two affine components were combined in a Log-euclidian
polyaffine framework using weights defined by a gaussian of
the distance to the prostate and rectum volumes respectively.
That is :

wP (x) = exp

− min
p∈VP

‖x− p‖2

2σ2


wR(x) = exp

− min
r∈VR

‖x− r‖2

2σ2

 . (5)

Where VP and VR denote the prostate and rectum volumes
respectively. The gaussian variance was set to σ2 = 1.0.

Finally, registration of distance maps was completed using
4 scales. At each scale, 20 iterations were performed using
a gaussian regularization variance σ2 = 1.5. Even if we
expected some improvement in the DSCs, results were poorer
(table III) with mean prostate and rectum DSCs of 0.61 and
0.53 for prostate and rectum respectively.

TABLE III
DEMONS REGISTRATION DSC

P1 P2 P3 P4 P5 Mean Std
Prostate 0.56 0.58 0.59 0.67 0.67 0.61 0.05
Rectum 0.46 0.44 0.70 0.53 0.54 0.53 0.1



Fig. 5. Results of Affine Registration for prostate and rectum. Images show
prostate surfaces of patients P1 to P5 before and after affine registration
(first and second columns) together with rectum surfaces of the same patients
before and after affine registration (third and fourth columns).

IV. CONCLUSION

In this paper, we proposed a novel approach for MR-
US registration in prostate brachytherapy. When applying the
affine part of the registration scheme to the prostate, very good
DSC were obtained. For the rectum, the deformation between
MR and US images was clearly not affine and poorer DSC
were obtained. When combining the two affine components
in a single log-euclidian polyaffine transform, results became
poorer for both prostate and rectum even after application
of a demons deformable registration. It therefore seems that
prostate and rectum deformations are relatively independent
from each other or at least that their interactions cannot be
characterized by a polyaffine scheme with gaussian weights.
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